
COURS 9

Version du 19 février 2025.

Rappel. Nous avons démontré le théorème suivant, le “théorème fon-
damental des treillis distributifs finis.”

Théorème 2.7.2. Un treillis fini est distributif si et seulement si il est
isomorphe à l’ensemble des parties inférieurs d’un poset, ordonné par
inclusion.

2.8. Pavage par dominos. J’ai trouvé un très bel exemple d’un treillis
distributif que je veux vous présenter.

Fixons un ensemble de carrés 1×1 dans la plan (avec leurs coins sur
des points du réseau Z2. On veut considérer l’ensemble (possiblement
vide) des façons de couvrir cette ensemble de carrés par des dominos
1× 2.

Nous allons voir que si cet ensemble est non vide, il a naturellement
la structure d’un treillis distributif. Je trouve cela intéressant en soi-
même, mais il y aura aussi une application à l’échantillonage, où on
veut choisir un élément uniformément de l’ensemble des pavages.

Les idées sur lesquelles est basée cette section remontent à des ar-
ticles de Conway et Lagarias, et de William Thurston (“Conway’s tiling
groups”, American Math Monthly, 1990). Je vais suivre l’article “The
lattice structure on the set of domino tilings of a polygon” de Eric
Rémila.

On suppose qu’on commence avec une figure F qui est un ensemble
fini de carrés 1 × 1 dans le plan, avec leurs coins sur le réseau Z2.
Nous supposons que l’intérieur de F est connexe (donc par rapport
aux pavages, F n’est pas composé de deux régions indépendantes), et
que R2 \ F est également connexe (ce qui veut dire que F n’a pas de
“trous”).

On dira que deux éléments de Z2 sont voisins s’ils sont aux deux
bouts d’un segment de longueur 1. v ∈ Z2 a donc quatre voisins.

Un chemin est une suite de sommets (v0, v1, . . . , vp) telle que vi+1 est
un voisin de vi pour tout i.

Colorons les carrés de F en échiquier. Dirigeons les arêtes de telle
sorte qu’on suit la flèche si on procède avec un carré blanc à gauche. Di-
sons que ∆h(v, w) = 1 dans ce cas, et ∆h(v, w) = −1 dans l’autre cas.
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Pour un chemin c = (v0, v1, . . . , vp), définissons ∆h(c) = ∆h(v0, v1) +
∆h(v1, v2) + . . . . Nous appelerons ∆h(c) son changement d’hauteur.

Soit T un pavage. On dira qu’un chemin c est autorisé si les sommets
de c sont dans F , et c ne coupe jamais un domino.

Lemme 2.8.1. Soit T un pavage de F . Pour c, c′ deux chemins auto-
risés de v vers w, on a ∆h(c) = ∆h(c′).

Démonstration. Il suffit de démontrer que pour n’importe quel cycle au-
torisé qui ne répète pas de sommets, la somme est nulle. La démonstra-
tion se fait par récurrence. Si le cycle ne contient qu’un seul domino,
on vérifie directement que ça marche. Sinon, on peut diviser la région
entourée par le cycle en deux par un chemin autorisé. (Comme nous
avons vu dans le cours, ce n’est peut-être pas totalement évident. Com-
mençons avec un arête qui sépare deux dominos. Allant dans un pre-
mier temps vers le nord-ouest, on n’est jamais bloqué avant d’arriver
au bord, et de façon similaire, on peut aller vers le sud-est pour, en-
core arriver au bord. On a maintenant dessiné une courbe qui divise
F en deux, avec les deux parties non vides.) Par récurrence, les cycles
autour de ces deux régions ont une somme nulle, et il en découle que
la même chose est vrai pour le cycle de départ. (Remarquons que lors-
qu’on prend la somme des deux cycles plus petits, la contribution du
chemin diviseur va dans deux sens opposés, et donc s’annul.) □

Fixons un sommet v0 sur le bord de F . Soit T un pavage. La fonction
hauteur de T , notée hT , est définie par hT (w) = ∆h(v0, w).

Remarquons que la fonction hauteur est fixée sur le bord, car on peut
la calculer en utilisant le chemin (autorisé !) suivant le bord.

Il y a une autre façon de comprendre la fonction hauteur, en dessinant
des courbes de niveau. La meilleure façon de faire cela (je crois) est de
dessiner les courbes de niveau pour les hauteurs dans Z+ 1
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. (On verra

le domino comme une surface dans R3.)

Lemme 2.8.2. Soient T, U deux pavages. Si hT (v) = hU(v) pour tout
v, alors T = U .

Démonstration. Soient v, w deux sommets adjacents, avec e(v, w) = 1.
Alors il y a deux cas de figure : l’arête entre v et w coupe un domino
de T , où elle n’en coupe pas. Dans le deuxième cas, hT (w) = hT (v)+1.
Dans le deuxième cas, hT (w) = hT (v)−3. Il s’ensuit que les dominos de
T sont exctement ceux qui recouvrent les arêtes où la hauteur change de
3 au lieu de 1. Le même argument s’applique à U , et donc T = U . □

Il est donc possible de définir un poset sur les pavages : on dira que
T ≤ U si et seulement si hT (v) ≤ hU(v) pour tout v.
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Lemme 2.8.3. Supposons qu’on ait choisi v0 = (0, 0) de telle sorte
qu’il soit au côté sud ouest d’un carré blanc. Alors, pour n’import quel
pavage T , et n’importe quel v = (x, y), on a :
— hT (v) ≡ 0 mod 4 si x et y sont tous les deux pairs
— hT (v) ≡ 1 mod 4 si x est impair et y pair
— hT (v) ≡ 2 mod 4 si x et y sont tous les deux impairs
— hT (v) ≡ 3 mod 4 si x est pair et y impair

Démonstration. Évident, en prenant n’importe quel chemin autorisé de
v0 à v (par récurrence sur sa longueur). □

Exemple 2.8.1. Pour le carré 2× 2, il y a deux pavages. L’un est au
dessus de l’autre dans l’ordre. Les fonctions hauteurs sont les mêmes
sur le bord, et sont différent par 4 sur le seul point à l’intérieur.

Ça veut dire que, dans n’importe quel poset de pavages, le “flip”
qui remplace deux dominos horizontaux, adjacents sur leur côté long,
par deux dominos adjacents verticaux, sera forcément une relation de
couverture. (On verra qu’ils sont les seuls.)


