COURS 8

Version du 19 février 2025.

Rappel. La derniere fois, nous avons commencé une parenthese sur
les treillis. Un treillis est un poset dans lequel n'importe quelle paire
d’éléments x,y a un sup x V y et un inf z A y.

Une famille intéressante de treillis est les treillis de la forme J(P),
les parties inférieures de P, avec 'ordre donné par l'inclusion. (Une
partie inférieure de P est un sous-ensemble [ tel quesiz € I et y < x,
alors y € I aussi.) J(P) est toujours un treillis, avec les opérations de
treillis données par réunion et intersection. J(P) est distributif, ce qui
veut dire que dans le treillis on a les deux équations de distributivité
qui sont vérifiées :

zVynz)=@VyA@xVz)etzA(yVz)=(@Ay) V(zAz)

Nous avons énoncé le théoreme suivant, le “théoreme fondamental
des treillis distributifs finis.”

Théoreme 2.7.2. Un treillis fini est distributif si et seulement si il est
isomorphe a l’ensemble des parties inférieurs d’un poset, ordonné par
inclusion.

Pour démontrer ce théoreme, nous avons introduit la notion d’élément
sup-irréductible d’un treillis. Un élément = est sup-irréductible s’il ne
peut pas étre exprimé comme sup de deux éléments qui lui sont stric-
tement plus petit. Une définition équivalente (sous I'hypothese que le
treillis soit fini) est que x couvre exactement un élément.

J’ai aussi énoncé le lemme suivant, que nous commencerons notre
cour d’aujourd’hui par démontrer.

Lemme 2.7.1. N’importe quel élément dans un treillis fini peut étre
écrit comme sup des éléments sup-irréductibles en dessous de lui.

2.7. Parenthese sur les treillis, suite.

Démonstration du lemme 2.7.1. 1l est évident que le sup des sup-irré-
ductibles en dessous de x est inférieur ou égal a =, donc tout ce qu’il faut
démontrer c’est qu’il est possible d’exprimer x comme sup de (certains)
sup-irréductibles en dessous de lui, et on saura que le sup de tous sera
aussi égal a x.
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La démonstration se fait par récurrence sur L (selon une extension
linéaire de L).

Soit x un élément de L, et supposons que nous sachions déja que le
lemme est vrai pour tout élément de L en dessous de x.

Supposons dans un premier temps que x n’est pas sup-irréductible.
On peut donc I'exprimer comme x = yVz, avec y, 2 < x. Par récurrence,
on sait déja exprimer y et z comme sup de sup-irréductibles, et on a
réussi.

Dans le cas ou x est sup-irréductible, on peut I'écrire comme z, et
on a déja gagné. O

Regardons encore le cas d'un treillis de la forme J(P), pour se rap-
peler un peu de comment ¢a marche. (Ce n’est pas nécessaire pour la
démonstration du théoréme : nous savons déja que J(P) est distribu-
tif; ce qui est difficile est de démontrer, juste a partir du fait que L est
distributif, que L est de la forme J(P).)

Lemme 2.7.2. Soit A € J(P). Les éléments de J(P) couverts par A
sont les éléments de la forme A\ {a}, pour a un élément mazimal de

A.

Démonstration. Si a est maximal dans A, A\ {a} est bien toujours une
partie inférieure, donc A couvre A\ {a}. Si B C A et B est une partie
inférieure de P, il doit y avoir au moins un des éléments maximaux de
A qui n’est pas présent dans B, car sinon, B = A. Donc entre B et
A dans l'ordre, il y a une partie inférieure de la forme A\ {a}, ce qui
faut qu’il n’y a pas d’autres relations de couverture que celles que nous
avons déja trouvées. U

Ici nous retrouvons le fait que j’ai mentionné la derniere fois, que les
sup-irréductibles de J(P) sont les parties inférieures principaux de P,
c’est-a-dire, les éléments ayant un seul maximum a. Selon le lemme, un
tel élément de P va couvrir un seul autre élément de P, ce qui le fait
sup-irréductible. Ecrivons (a) pour la partie inférieure engendré par a.

Nous voyons aussi qu'’il y a une fagon préférée d’exprimer A € J(P)
comme sup de sup-irréductibles.

Lemme 2.7.3. Pour A € J(P), on peut exprimer A =\/ . (a) pour
nimporte quel X C A qui contient les éléments maximauzx de A.

Démonstration. 11 est certain que \/, . v (a) < A pour tout X € A, donc
il suffit de montrer que \/ ... 4{a) = A, ce qui est vrai : tout élément
de A est en dessous d’un élément de max A, et donc tout élément de A

est contenu dans \/ ... 1(@) = U, cmax 4 (@) O
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II en découle que pour chaque A € J(P), il y a une unique fagon
minimale de I’exprimer comme sup d’un ensemble de sup-irréductibles :
selon le lemme, il faut prendre les sup-irréductibles qui correspondent
aux éléments maximaux de A.

Dans des treillis (finis) plus généraux, il n’y a pas forcément une
unique fagon minimale d’exprimer un élément de cette maniere. Pour
certains treillis (< sup-semidistributifs >, <join semidistributive =), il y
a une notion de “sup-représentation canonique” qui demande a la fois
que 'expression soit irrédondante, et aussi qu’elle utilise les éléments
le plus bas possible dans le treillis.

C’est peut-étre le moment d’indiquer que tout ce que nous avons fait
pour 'opération sup et les sup-irréductibles, peut aussi se faire avec
I'opération inf et les inf-irréductibles. (Exercise : & quoi ressemblent les
inf-irréductibles dans J(P)? Avertissement : ce ne sont pas les parties
supérieures principales, car les éléments de J(P) sont par définition des
parties inférieures.)

Il aurait également été possible de considérer un treillis de parties
supérieures de P, mais ¢a revient a la méme chose que de prendre les
parties inférieures de P renversé (ce qu’on appelle le dual de P).

Nous sommes maintenant préts a faire la démonstration du théoreme
2.7.2.

Démonstration du théoréeme 2.7.2. Soit L un treillis distributif. Soit P
I’ensemble d’éléments sup-irréductibles de L.

Pour t € L, soit I, = {p € P | p < t}. Ceci définit une application
¢ de L vers J(P). Or ¢ est injective par le lemme 2.7.1, et on voit
clairement que ¢ est un isomorphisme d’ordre sur son image. Il faut
donc démontrer que ¢ est surjective.

Soit I € J(P), et soit t = \/ ., s. Nous voulons démontrer que I = I,.
Il est évident que I C I;. (Jusqu’ici, tout ce que nous avons dit serait
vrai pour n’importe quel treillis! I faut utiliser I’hypothese que L est
distributif.)

Soit u € I;. Nous avons 1’équation

Vs=\Vs
sel sl

En appliquant Au des deux bords, et en utilisant la distributivité, on

obtient :
\/(sAu) = \/(s/\u)

sel sl

Au coté droit, puisque u € I;, il y a u qui apparait dans le sup, et
on obtient u (les autres termes étant plus petits). Sur le coté gauche,
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si u & I, tous les s A u sont strictement inférieurs a u, et puisque u
est sup-irréductible, on ne peut pas 'exprimer comme sup d’éléments
strictement plus petits que lui. Donc on a u € I, comme voulu. 0



