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Rappel. La derniere fois, nous avons fini avec le théoreme de Dilworth,
qui montre qu'un poset n’ayant pas d’antichaine de taille m + 1, peut
étre recouvert par m chaines.

Nous avons aussi vu le théoreme de Tutte, sur les graphes (pas
forcément bipartis) qui contiennent un couplage. Encore une fois, une
condition qui est (assez) évidemment nécessaire s’avere suffisante. Mais
dans ce cas, méme la condition, et sa nécessité ne sont pas si évidentes.
Cette condition est la suivante : si on enléve un ensemble S de sommets,
il faut qu’il n’y ait pas plus que |S| composantes de taille impaire dans
ce qu'il reste. (La nécessité provient du fait que chaque composante
de taille impaire pose un “probleme”, et les S sommets, lorsqu’on les
rajoute, peuvent chacun régler au plus un de ces problemes. Que cette
condition soit suffisante n’est pas du tout clair; la démonstration est
assez longue et je ne vais pas essayer de la résumer.

2.7. Parenthese sur les treillis. Lorsque nous parlons des mariages
stables, il me faudra certaines notions sur les treillis, donc nous allons
les regarder des maintenant, pour ne pas étre obligé de nous arréter
la-dessus une fois que les mariages stables ont été abordés.

Nous avons déja parlé des posets (qui sont des relations réflexives,
transitives et anti-symmétriques).

Pour qu'un poset P soit un treillis, il y a deux conditions nécessaires.
La premiere c’est que pour tout paire z,y € P, il faut qu’il existe un
(unique!) élément maximum parmi ceux qui sont a la fois plus petit
que x et plus petit que y. La deuxieme c’est que, de facon dualle, pour
tout paire z,y € P, il faut qu’il existe un (unique) élément minimum
parmi ceux qui sont plus grand que = et plus grand que y.

Le maximum des éléments en dessous de x et y est noté z A y et on
I'appelle le inf (ou le meet) de x et y. Le minimum des éléments au
dessus de x et y est noté x V y; on appelle le sup (ou le join) de z et
Y.

Un exemple d’un treillis : pour n € N, les diviseurs de n, ordonnés par
divisibilité, forme un treillis. La, Ay = pged(z,y), xVy = ppem(z, y).
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Dans un treillis, on dispose donc de deux opérations, et on peut
s’amuser a en faire de l'algebre si on le souhaite. (Comme dans un an-
neau.) Il y a des identités satisfaites par ces opérations. Par exemple
V et A sont commutatives et associatives. Mais elles ont aussi des
autres propriétés que I’on ne connait pas de la théorie des anneaux. Par
exemple, idempotence :  Vx = x, x A x = x. Exercise : il y a d’autres
équations simples qui ne découlent pas des équations précédentes, et qui
sont vérifiées dans n’importe quel treillis. Trouvez-les. De plus, on peut
démontrer que tout ensemble avec deux opérations qui vérifient ces
conditions (commutativité, associativité, idempotence, et une autre)
provient effectivement d’un treillis dans le sens que nous ’avons défini.
En particulier, on peut reconstruire le poset a partir de ces opérations :
x <y si et seulement si x Ay = z si et seulement si zVy = y. Comme
référence pour cette perspective sur les treillis, on peut prendre un des
livres de Grétzer (General Lattice Theory, Lattice Theory, ...).

Cette perspective algébrique était le domaine de ce qui s’appellait
“I’algebre universelle.” C’est moins a la mode actuellement. D’ailleurs,
il y a une nouvel intérét dans des aspects combinatoires des treillis.
L’atelier a BIRS auquel je suis allé traitait de ce sujet-la. Pour une
perspective plus combinatoire, il y a le troisieme chapitre de Enumera-
tive Combinatorics I de Stanley.

Un exemple classique d’un treillis est le treillis booléen des sous-
ensembles de {1,...,n}, ordonné par 'inclusion.

Plus généralement, soit P un poset. Une partie inférieure de P est
un sous-ensemble I de P tel que, six € [ et y < z, alors y € I. On
peut ordonner les parties inférieures par inclusion.

Cela nous donne un treillis, que nous noterons J(P) : si A, B sont
deux parties inférieures de P, la plus grande partie inférieure plus petit
que A et que B, est AN B. De fagon similaire, la plus petite partie
inférieure plus grand que A et que B, est AU B.

On dit qu’un treillis est distributif si le sup distribue sur le inf et
vice versa :

zV(yAz)=(xVy AxVz)
xAyVz)=(xAy)V(zA:z)

Effectivement, on peut montrer qu’il suffit de prendre I'un ou 'autre
de ces équations comme hypothese ; et puis 'autre en découle.

Nathan Williams a fait une jolie frise chronologique de la théorie des
treillis, qui commence en 1880, quand C.S.Peirce dit que tout treillis est
distributif, ce qui est “facilement démontré, mais cette démonstration
est trop pénible pour étre donnée.” (La prochaine date importante :
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en 1890, Schroder fait la remarque qu’effectivement, ce n’est pas tout
treillis qui est distributif.)

Les diviseurs de n forment effectivement pas juste un treillis, mais
un treillis distributif. (Exercise. Ca simplifie les choses beaucoup de
supposer que la factorisation en facteurs premiers est unique.)

Lemme 2.7.1. Soit P un poset. Alors J(P) est distributif.

Démonstration. Nous savons que sup et inf sont donnés par intersection
et réunion. Les deux équations sont connues (et évidentes) pour ces
opérations. O

Quel est 'intérét de cette définition (si on ne s’est pas déja embarqué
dans la voie de 'algebre universelle) ?

Théoreme 2.7.1. Un treillis est distributif si et seulement si il ne
contient pas ni le pentagone ni le diamant comme sous-treillis.

Aussi, il y a une condition combinatoire qui est peut-étre encore plus
intéressante pour nous.

Théoreme 2.7.2. Un treillis fini est distributif si et seulement si il est
isomorphe a l’ensemble des parties inférieurs d’un poset, ordonné par
inclusion.

Donc 'exemple que nous avons déja vu des parties inférieures est
effectivement completement général. (Au moins dans le cas des treillis
finis. Le cas infini est plus compliqué. Z, < est distributif, mais n’est
pas isomorphe aux parties inférieures d’un poset, n’ayant pas d’élément
minimum.) Cela démontre un des sens du théoreme. Pour I'autre sens,
a partir d’un treillis distributif L, il faut trouver un poset P tel que
J(P) soit isomorphe & L.

Nous voulons retrouver, a l'intérieur de L, un poset tel que L = J(P).
Dans le cas de J(P) lui-méme, on sait le faire : ce sont les parties
inférieures principales (engendrées par un seul élément). (A est partie
inférieure principale de P s’il existe un a dans P tel que A = {y € P |
y < a}.) L’ordre sur J(P), restreint aux parties inférieures principales,
nous redonne l'ordre sur P.

Mais, comment identifier ces éléments a l'intérieur de L, sans qu’on
sache déja comment décrire L comme J(P)? Il s’avere que ce sont
les éléments qui couvrent exactement un élément. (Si A est la partie
principale engendré par a, le seul élément qui peut étre enlevé de A est
a; et s’il n’y a qu'un seul élément a qui peut étre retiré, c’est que tout
autre élément est en dessous de lui.)

Il y a aussi une autre fagcon de décrire ces éléments qui ne couvrent
qu’un seul élément : ce sont les éléments z qui ne peuvent pas étre écrits
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comme z = z V y de fagon non triviale (c’est-a-dire, si z =z V y, alors
x =zouy = z).Siz couvre deux éléments distincts, leur sup est z; et
si z ne couvre qu’un seul élément z,, tout sup d’éléments strictement
plus petit que z sera également plus petit ou égal a z,. On appelle
ces éléments sup-irréductibles. (Attention : étre sup-irréductible et ne
couvrir qu’un seul élément ne sont plus la méme chose dans des treillis
infinis.)
Un intéret des éléments sup-irréductibles c’est le résultat suivant :

Lemme 2.7.2. N importe quel élément dans un treillis fini peut étre
écrit comme sup des éléments sup-irréductibles en dessous de lui.

(Il n’est généralement pas nécessaire de les utiliser tous.)



