
COURS 6

Version du 19 février 2025.

Rappel. La dernière fois, nous avons regardé une version grossière
conjecturale du théorème de Menger, qui ne regarde pas “chemins” et
“sommets à enlever” mais plutôt “chemins distants les uns des autre” et
“sommets à enlever, chacun avec son voisinage jusqu’à une certaine dis-
tance”. Une partie est démontrée, mais il y a aussi des contre-exemples.
Nous n’avons pas entré dans les détails.

Nous avons regardé le théorème de mariage de Hall, qui donne les
conditions sous lesquelles il existe un couplage qui contient toutes les
sommets F dans un graphe bipartie avec parties F et H. Il y a une
condition nécessaire évidente, et il s’avère que cette condition est suf-
fisante.

Il y a aussi une version “défective” où on pose la question : “quelles
sont les conditions nécessaires pour que toutes éléments de F , sauf k,
puissent être recoverts. Encore, la condition nécesssaire évidente s’avère
suffisante.

2.5. Théorème de Dilworth. Dans un poset, une châıne est une
sous-ensemble totalement ordonné (tout élément est comparable à tout
autre élément). Une antichâıne est un ensemble où aucun paire d’éléments
distincts sont comparables.

Théorème 2.5.1 (Théorème de Dilworth). Si un poset fini P n’a pas
d’antichâıne de taille m+1, alors on peut exprimer P comme la réunion
de m châınes.

Remarquons que le feeling de ce théorème est un peu différent de
ceux que nous avons démontré en utilisant Ford–Fulkerson. Si on es-
saye d’imaginer les châınes comme un flot dans un poset, on constate
que notre hypothèse exclut les “grandes” coupures, pas les petites, et
nous cherchons un flot qui utilise tous les sommets, ce qui n’est pas
obligatoire dans le théorème de Ford–Fulkerson.

Remarquons aussi que le théorème est encore de la forme “condition
nécessaire suffisante s’avère suffisante” : si on a une antichâıne de taille
k, et on essaie de décomposer le poset en châınes, chaque élément de
l’antichâıne est forcément dans une différente châıne, donc il nous faut
au moins k châınes.
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Démonstration. La démonstration se fait par récurrence sur la taille
de P . Supposons que P n’a pas d’antichâıne de taille supérieur à m.
Nous cherchons donc à le décomposer en m châınes. Soit C une châıne
maximale dans P . Si on retire C, on peut de nouveau chercher une
antichâıne de taille maximale. Si la taille maximale est maintenant
m − 1, nous avons gagné par recurrence. La taille maximale ne peut
pas grandir à cause du fait que nous avons enlevé des éléments, donc le
cas problématique est où la taille maximale est encore m. Soit A une
ant̂ıchaine de S \ C de taille m.

Nous avons maintenant une antichâıne A de taille m, qui n’a pas
d’intersection avec une châıne maximale C. Cette châıne ne sera pas
finalement une des châınes de notre décomposition, et ne peut pas
l’être, car il faut que nous ayons une châıne différente pour chaqu’un
des éléments de A, donc on ne peut pas utiliser C. À quoi est-ce que
C peut nous servir ?

Soit A+ tout élément de P qui est supérieur à un élément de A :

A+ = {x | ∃a ∈ A, x ≥ a}

et de façon similaire

A− = {x | ∃a ∈ A, x ≤ a}

Nous allons utiliser l’hypothèse de recurrence sur A+ et A−. Pour
ce faire, il faut que nous sachions que A+ et A− ne sont pas P tout
entier. Là, C nous aide. L’élément maximum de C n’est pas lui-même
dans A, puisque C n’intersecte pas A, et puisque l’élément maximum
de C est un élément maximal de P , il n’y a aucun autre élément de
P (et a fortiori de A) qui lui est supérieur. Donc, l’élément maximum
de C n’est pas dans A+, et, de façon similaire, l’élément minimum de
C n’est pas dans A−. Donc, on peut utiliser l’hypothèse de récurrence
sur A+ et sur A− ; chacun est exprimé comme la réunion de m châınes.
Mais maintenant nous avons 2m châınes au total !

Dans A+, les éléments de A sont les éléments minimaux de chaque
châıne. Pourquoi ? Soit x l’élément minimal d’une châıne, mettons, la
châıne qui contient a ∈ A. Si x ̸= a, il faut qu’il y âıt un élément a′ ∈ A
avec x ≥ a′. Mais là on a a ≥ x ≥ a′. Puisque A est une antichâıne, on
doit avoir a = a′.

De façon similaire, les éléments de A sont les éléments maximaux de
chaque châıne dans A−. Par transitivité, on peut donc coller les châınes
ensemble, pour avoir m au final, comme voulu.

Finalement, il faut remarquer que tout élément de P est contenu dans
A+ ∪A−. Ceci découle du fait que A est une antichâıne maximale : s’il
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y avait un élément incomparable à A, on aurait pu l’ajouter à A pour
obtenir une antichâıne encore plus grande. □

2.6. Théorème de Tutte. Mettons que nous avons n personnes très
modernes qui veulent se marier. Donc on a juste un graphe qui in-
dique qui est prêt à se marier avec qui. (Le graphe n’est plus forcément
biparti.) Qu’est-ce qu’on peut dire. Comme le dit facebook, “c’est com-
pliqué.” Mais il y a un théorème qui s’adresse à cette situation.

Encore une fois, le théorème est de la forme “condition nécessaire
(assez) évidente est également suffisante.” Donc, commençons par la
condition nécessaire.

Dans un pentagone, est-ce que tout le monde peut se marier. Évidemment
que non, are on a un nombre impair de sommets. Okay, si je rajoute
aussi un triangle ? Je n’ai plus un nombre impair de sommets. Mais
évidemment ça ne résoult pas le problème. Le problème n’était donc
pas le nombre de sommets, mais le fait d’avoir une composante de taille
impaire.

Si j’ai un sommet qui est lié à trois triangles, est-ce que ça peut mar-
cher ? Non, car si on enlève le sommet au milieu, on a trois composante
impaires. Le sommet qu’on a enlevé peut régler une des composantes,
mais ça nous laisse deux composantes qui sont toujours problèmatiques.

Donc, définissons q(G) comme étant le nombre de composantes de
taille impaire de G. (Par la suite, je vais juste parler de “composantes
impaires” ou de “composantes paires”.)

La condition nécessaire évidente est que, pour chaque S ⊆ G, on a
q(G− S) ≤ |S|.

Théorème 2.6.1 (Théorème de Tutte). Un graph G contient un cou-
plage qui recouvre tous ces sommets si et seulement si pour tout sous-
ensemble S des sommets de G, on a q(G− S) ≤ |S|.

Démonstration. L’esquisse de la démonstration est la suivante. Soit
S0 = {s1, . . . , sm} un ensemble de sommets pour lequel q(G − S0) =
|S0|. Supposons que le théorème est vrai et il existe un couplage M .
Soient C1, . . . , Cm les composantes impaires deG−S0, et soientD1, . . . , Dk

les composantes paires. Pour chaque si ∈ S0, il y a une arête de M qui
lie si à un composante impaire. Après renuméroter au besoin, nous pou-
vons supposer que si est lié à ci qui est un sommet de Ci. M restreint
à chaque Di est un couplage, et M restreint à C − ci est un couplage.

Nous allons, donc, trouver un tel S0, et puis démontrer l’existence des
couplages dans les composantes de G−S0, ce qu’on fera par récurrence,
ainsi qu’un couplage entre les éléments de S0 et les composantes im-
paires.
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Comment trouver S0 ? Nous allons choisir S0 maximal parmi les S
pour lesquels q(G − S) = |S|. Ça va s’il y en a. Par l’hypothèse pour
S = ∅, le nombre de sommets est pair. Donc, pour n’importe quel
S = {s}, le nombre de sommets de G − S est impair, donc il y a au
moins une composante impaire, et par l’hypothèse, il n’y en a pas plus.
Donc, n’importe quel {s} est un choix possible pour S0, et on peut
donc bien prendre un S0 maximal.

Comme dans l’esquisse, soient C1, . . . , Cm les composantes impaires
de G − S0, et D1, . . . , Dk les composantes paires. Ici m = |S0|, par
l’hypothèse sur S0.

Nous voulons trouver un couplage dans Di. Soit S
′ un sous-ensemble

des sommets de Di. q(G− (S0 ∪ S ′)) = m+ q(Di − S ′), et q(G− (S0 ∪
S ′)) ≤ |S0 ∪ S ′| = m+ |S ′|. Donc q(Di − S ′) ≤ |S ′|, et par récurrence,
tous les Di sont reglés.

Passons aux Ci. Dans Ci, on a un nombre impaire de sommets ; il y
aura un sommet lié à un élément de S0 dans le couplage final. On va
donc choisir de façon arbitraire c ∈ Ci, et nous allons démontrer que
Ci − c contient un couplage, peu importe le choix de c.
On aimerait utiliser la même stratégie que pour Di, mais c’est un peu

plus compliquée. Supposons qu’il y a un sous-ensemble S ′ de Ci− c qui
pose problème. C’est-à-dire que q(Ci − c− S ′) > |S ′|. S’il n’y en a pas,
l’affaire est reglée comme pour Di, mais il est possible que S ′ existe.
Que faire alors ?

Regardons de plus près. q(G−S0−c−S ′) = m−1+q(Ci−c−S ′) ≤
m + 1 + |S ′|. Donc, q(Ci − c − S ′) ≤ |S ′| + 2. (Et nous savons déjà
que q(Ci − c − S ′) > |S ′|, donc q(Ci − c − S ′) = |S ′| + 1 ou |S ′| + 2.)
Mais q(Ci − c − S ′) ≡ |Ci − c − S ′| mod 2, et |Ci − c| est pair, donc
q(Ci − c− S ′) ≡ |S ′| mod 2. Il s’ensuit que q(Ci − c− S ′) = |S ′| + 2.
Donc l’inéquation q(Ci − c − S ′) ≤ |S ′| + 2 était une équation, et
q(G− S0 − c− S ′) ≤ m+ 1 + |S ′| aussi. Et donc. . . ?

Et donc, S0 n’était pas maximal parmi les ensembles S tels que
q(G− S) = |S| ! On aurait dû prendre S0 ∪ {c} ∪ S ′ !

Donc il n’existe aucun S ′ problématique pour Ci − c, et nous avons
donc un couplage dans chaque Ci − c, et ce, peu importe le choix du
sommet c dans Ci.

Finalement, il nous faut un couplage entre les éléments de S0 et les
Ci. Puisque nous pouvons choisir n’importe quel c ∈ Ci pour être lié à
un élément de S, il suffit d’énumérer, d’un côté, les éléments de S0, et
de l’autre côté, les composantes Ci, et de mettre un lien entre s ∈ S0

et Ci s’il y a une arête qui va de s vers un sommet de Ci. Il nous faut
maintenant un couplage dans ce graphe biparti. Comment faire ?
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Évidemment, il faut utiliser le théorème de Hall. Notons que, puisque
les deux parties du graphe sont de la même taille, il y a deux façon
différentes de procéder : on peut démontrer que pour chaque sous-
ensemble de C1, . . . , Cm, il y a assez d’éléments de S, ou que pour
chaque sous-ensemble de S0, il y a assez de composantes impaires.
Finalement, il revient à la même chose, mais il se peut que l’un ou
l’autre soit plus facile à voir. Soit C un sous-ensemble de C1, . . . Cm, et
soit S ′ tout élément de S0 lié à un composante dans C. Maintenant,
|C| ≤ q(S ′) ≤ |S ′|, donc la condition de Hall est vérifiée, et nous avons
un couplage.

Donc, on utilise ce couplage pour décider dans quel composante lier
les sommets de S0. Par la construction du graphe biparti, si on a
déterminé qu’on veut lier s ∈ S0 avec composante Ci, il existe au moins
un sommet dans Ci lié avec s. On choisit ce sommet ci arbitrairement.
Maintenant, les graphes Ci− ci et Di vérifient toujours la condition, et
nous trouvons des couplages dans ces graphes par récurrence. □


