COURS 6

Version du 19 février 2025.

Rappel. La derniere fois, nous avons regardé une version grossiere
conjecturale du théoreme de Menger, qui ne regarde pas “chemins” et
“sommets a enlever” mais plutot “chemins distants les uns des autre” et
“sommets a enlever, chacun avec son voisinage jusqu’a une certaine dis-
tance”. Une partie est démontrée, mais il y a aussi des contre-exemples.
Nous n’avons pas entré dans les détails.

Nous avons regardé le théoreme de mariage de Hall, qui donne les
conditions sous lesquelles il existe un couplage qui contient toutes les
sommets F dans un graphe bipartie avec parties F' et H. Il y a une
condition nécessaire évidente, et il s’avere que cette condition est suf-
fisante.

Il y a aussi une version “défective” ou on pose la question : “quelles
sont les conditions nécessaires pour que toutes éléments de F', sauf k,
puissent etre recoverts. Encore, la condition nécesssaire évidente s’avere
suffisante.

2.5. Théoreme de Dilworth. Dans un poset, une chaine est une
sous-ensemble totalement ordonné (tout élément est comparable a tout
autre élément). Une antichaine est un ensemble ol aucun paire d’éléments
distincts sont comparables.

Théoréme 2.5.1 (Théoreme de Dilworth). Si un poset fini P n’a pas
d’antichaine de taille m~+1, alors on peut exprimer P comme la réunion
de m chaines.

Remarquons que le feeling de ce théoreme est un peu différent de
ceux que nous avons démontré en utilisant Ford—Fulkerson. Si on es-
saye d’imaginer les chaines comme un flot dans un poset, on constate
que notre hypothese exclut les “grandes” coupures, pas les petites, et
nous cherchons un flot qui utilise tous les sommets, ce qui n’est pas
obligatoire dans le théoreme de Ford—Fulkerson.

Remarquons aussi que le théoreme est encore de la forme “condition
nécessaire suffisante s’avere suffisante” : si on a une antichaine de taille
k, et on essaie de décomposer le poset en chaines, chaque élément de
I’antichaine est forcément dans une différente chaine, donc il nous faut
au moins k chaines.
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Démonstration. La démonstration se fait par récurrence sur la taille
de P. Supposons que P n’a pas d’antichaine de taille supérieur a m.
Nous cherchons donc a le décomposer en m chaines. Soit C' une chaine
maximale dans P. Si on retire C', on peut de nouveau chercher une
antichaine de taille maximale. Si la taille maximale est maintenant
m — 1, nous avons gagné par recurrence. La taille maximale ne peut
pas grandir a cause du fait que nous avons enlevé des éléments, donc le
cas problématique est ou la taille maximale est encore m. Soit A une
antichaine de S\ C de taille m.

Nous avons maintenant une antichaine A de taille m, qui n’a pas
d’intersection avec une chaine maximale C'. Cette chaine ne sera pas
finalement une des chaines de notre décomposition, et ne peut pas
I’étre, car il faut que nous ayons une chaine différente pour chaquun
des éléments de A, donc on ne peut pas utiliser C'. A quoi est-ce que
C peut nous servir ?

Soit A, tout élément de P qui est supérieur a un élément de A :

Ay ={z|Ja€ Az >a}
et de facon similaire
A_={z|Ja€ Az <a}

Nous allons utiliser I’hypothese de recurrence sur A, et A_. Pour
ce faire, il faut que nous sachions que A, et A_ ne sont pas P tout
entier. La, C' nous aide. L’élément maximum de C' n’est pas lui-méme
dans A, puisque C n’intersecte pas A, et puisque I’élément maximum
de C' est un élément maximal de P, il n’y a aucun autre élément de
P (et a fortiori de A) qui lui est supérieur. Donc, I’élément maximum
de C n’est pas dans A, , et, de fagon similaire, I’élément minimum de
C n’est pas dans A_. Donc, on peut utiliser 'hypothese de récurrence
sur A, et sur A_; chacun est exprimé comme la réunion de m chaines.
Mais maintenant nous avons 2m chaines au total !

Dans A, les éléments de A sont les éléments minimaux de chaque
chaine. Pourquoi? Soit x I’élément minimal d’une chaine, mettons, la
chaine qui contient a € A. Si x # a, il faut qu’il y ait un élément o’ € A
avec x > a’. Mais la on a a > x > a/. Puisque A est une antichaine, on
doit avoir a = a'.

De fagon similaire, les éléments de A sont les éléments maximaux de
chaque chaine dans A_. Par transitivité, on peut donc coller les chaines
ensemble, pour avoir m au final, comme voulu.

Finalement, il faut remarquer que tout élément de P est contenu dans
Ay UA_. Ceci découle du fait que A est une antichaine maximale : s'il
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y avait un élément incomparable a A, on aurait pu I'ajouter a A pour
obtenir une antichaine encore plus grande. 0

2.6. Théoreme de Tutte. Mettons que nous avons n personnes tres
modernes qui veulent se marier. Donc on a juste un graphe qui in-
dique qui est prét a se marier avec qui. (Le graphe n’est plus forcément
biparti.) Qu’est-ce qu’on peut dire. Comme le dit facebook, “c’est com-
pliqué.” Mais il y a un théoreme qui s’adresse a cette situation.

Encore une fois, le théoreme est de la forme “condition nécessaire
(assez) évidente est également suffisante.” Donc, commengons par la
condition nécessaire. )

Dans un pentagone, est-ce que tout le monde peut se marier. Evidemment
que non, are on a un nombre impair de sommets. Okay, si je rajoute
aussi un triangle? Je n’ai plus un nombre impair de sommets. Mais
évidemment c¢a ne résoult pas le probleme. Le probleme n’était donc
pas le nombre de sommets, mais le fait d’avoir une composante de taille
impaire.

Si j’ail un sommet qui est lié a trois triangles, est-ce que ¢a peut mar-
cher ? Non, car si on enleve le sommet au milieu, on a trois composante
impaires. Le sommet qu’on a enlevé peut régler une des composantes,
mais ¢a nous laisse deux composantes qui sont toujours problematiques.

Donc, définissons ¢(G) comme étant le nombre de composantes de
taille impaire de G. (Par la suite, je vais juste parler de “composantes
impaires” ou de “composantes paires”.)

La condition nécessaire évidente est que, pour chaque S C G, on a
q(G = 5) <15].

Théoréme 2.6.1 (Théoreme de Tutte). Un graph G contient un cou-
plage qui recouvre tous ces sommets si et seulement si pour tout sous-
ensemble S des sommets de G, on a q(G — 5) < |S|.

Démonstration. L’esquisse de la démonstration est la suivante. Soit

So = {s1,-..,Sm} un ensemble de sommets pour lequel ¢(G — Sy) =
|So|. Supposons que le théoreme est vrai et il existe un couplage M.
Soient (', ..., (), les composantes impaires de G— Sy, et soient Dy, ..., Dy

les composantes paires. Pour chaque s; € Sy, il y a une aréte de M qui
lie s; & un composante impaire. Apres renuméroter au besoin, nous pou-
vons supposer que s; est lié a ¢; qui est un sommet de C;. M restreint
a chaque D; est un couplage, et M restreint a C' — ¢; est un couplage.

Nous allons, donc, trouver un tel Sy, et puis démontrer I’existence des
couplages dans les composantes de G — .Sy, ce qu’on fera par récurrence,
ainsi qu’'un couplage entre les éléments de Sy et les composantes im-
paires.
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Comment trouver Sy ? Nous allons choisir Sy maximal parmi les S
pour lesquels ¢(G — S) = |S|. Ca va s’il y en a. Par 'hypothese pour
S = 0, le nombre de sommets est pair. Donc, pour n’importe quel
S = {s}, le nombre de sommets de G — S est impair, donc il y a au
moins une composante impaire, et par I’hypothese, il n’y en a pas plus.
Donc, n’importe quel {s} est un choix possible pour Sy, et on peut
donc bien prendre un Sy maximal.

Comme dans 'esquisse, soient C', ..., C,, les composantes impaires
de G — Sy, et Dy,..., Dy les composantes paires. Ici m = |Sp|, par
I’hypothese sur Sy.

Nous voulons trouver un couplage dans D;. Soit .S” un sous-ensemble
des sommets de D;. ¢(G — (SoUS")) = m+q(D; — 5'), et ¢(G — (SpU
SN) < |SoU S| =m+ 15" Donc ¢(D; — S") < |S’|, et par récurrence,
tous les D; sont reglés.

Passons aux C;. Dans C};, on a un nombre impaire de sommets; il y
aura un sommet lié a un élément de Sy dans le couplage final. On va
donc choisir de fagon arbitraire ¢ € C;, et nous allons démontrer que
C; — ¢ contient un couplage, peu importe le choix de c.

On aimerait utiliser la méme stratégie que pour D;, mais c¢’est un peu
plus compliquée. Supposons qu’il y a un sous-ensemble S” de C; — ¢ qui
pose probleme. C’est-a-dire que ¢(C; —c—S") > |[S’|. S’il n’y en a pas,
Paffaire est reglée comme pour D;, mais il est possible que S’ existe.
Que faire alors?

Regardons de plus pres. ¢(G—Sg—c—S") =m—1+¢(C;—c—95") <
m + 1+ |5'|. Donc, ¢(C; — ¢ —S") < |S’| + 2. (Et nous savons déja
que ¢(C; —c—95") > |5'|, donc ¢(C; —c—S5") = |S"| + 1 ou |5'] + 2.)
Mais ¢(C; —c = 8") = |C; — ¢ — 5’| mod 2, et |C; — ¢| est pair, donc
q(C; —c—S5") = |5l mod 2. 1l s’ensuit que ¢(C; — c—5") = |5 + 2.
Donc l'inéquation ¢(C; — ¢ — §') < |S'| + 2 était une équation, et
q(G—=Sy—c—5")<m+1+ |5 aussi. Et donc...?

Et donc, Sy n’était pas maximal parmi les ensembles S tels que
q(G —S) = |S|! On aurait du prendre Sp U {c} U S"!

Donc il n’existe aucun S’ problématique pour C; — ¢, et nous avons
donc un couplage dans chaque C; — ¢, et ce, peu importe le choix du
sommet ¢ dans C;.

Finalement, il nous faut un couplage entre les éléments de Sy et les
C;. Puisque nous pouvons choisir n’importe quel ¢ € C; pour étre lié a
un élément de S, il suffit d’énumérer, d’un coté, les éléments de Sy, et
de 'autre coté, les composantes C;, et de mettre un lien entre s € Sy
et C; s’'il y a une aréte qui va de s vers un sommet de Cj. Il nous faut
maintenant un couplage dans ce graphe biparti. Comment faire ?
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Evidemment, il faut utiliser le théoreme de Hall. Notons que, puisque
les deux parties du graphe sont de la méme taille, il y a deux fagon
différentes de procéder : on peut démontrer que pour chaque sous-
ensemble de C4,...,C,,, il y a assez d’éléments de S, ou que pour
chaque sous-ensemble de Sy, il y a assez de composantes impaires.
Finalement, il revient a la méme chose, mais il se peut que I'un ou
I’autre soit plus facile a voir. Soit C un sous-ensemble de C1, ... C,,, et
soit S” tout élément de Sy lié & un composante dans C. Maintenant,
IC| < q(S") < |5’|, donc la condition de Hall est vérifiée, et nous avons
un couplage.

Donc, on utilise ce couplage pour décider dans quel composante lier
les sommets de Sy. Par la construction du graphe biparti, si on a
déterminé qu’on veut lier s € Sy avec composante C;, il existe au moins
un sommet dans C; lié avec s. On choisit ce sommet ¢; arbitrairement.
Maintenant, les graphes C; — ¢; et D; vérifient toujours la condition, et
nous trouvons des couplages dans ces graphes par récurrence. [l



