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Rappel. La dernière fois, nous avons regardé comment convertir notre
démonstration du théorème de Ford–Fulkerson en algorithme pour améliorer
un flot qui n’atteint pas encore la capacité minimale d’une coupure.

Nous avons regardé certaines variations sur le cadre de Ford–Fulkerson
(des flèches avec des capacités infinies, des sommets avec des capacités,
. . .).

Nous avons aussi regardé le théorème de Menger, qui dit que dans
un graphe G le nombre minimal de sommets qui séparent s et b est égal
au nombre de chemins disjoints entre s et b (seuls points de contact
des chemins sont s, b) ; le nombre minimal d’arêtes qui séparent s et
b est le nombre de chemins indépendants entre s et b (pas d’arêtes en
commun).

La chose à retenir, dans les deux cas, c’est que le théorème de
Ford–Fulkerson nous donne pas juste la démonstration, mais également
l’énoncé, une fois qu’on a remplacé chaque arête de G par une paire de
flèches allant dans les deux sens, et qu’on met des capacités de 1 sur les
flèches (respectivement, sur les sommets) pour la version ayant à faire
avec la séparation par arêtes (respectivement, sommets).

J’ai regardé la démonstration de Menger. Elle est écrite en allemand,
la terminologie de la théorie des graphes n’est pas encore standardisée,
et Menger s’intéresse aussi pour des cas avec des sommets ayant un
degré infini, et, plus généralement, à des questions à saveur plus topo-
logique. Je crois avoir compris que l’énoncé voulu c’est son “Satz δ,”
et que l’argument se fait par recurrence.

2.3. Application : connexité (théorème de Menger), suite. Une
révision d’un article est apparu sur arXiv dans les dernier jours, par
Nguyen, Scott, et Seymour, sur une version du théorème de Menger
(arXiv :2401.06685). Les deux derniers sont des somités de la théorie
des graphes (et Nguyen et l’étudiant de Seymour), donc je voulais vous
en parler brièvement.

Ils regardent une version grossier du théorème de Menger. L’idée,
plus généralement, est de développer des résultats qui s’intéressent pour
le comportement des graphes uniquement à grande échelle.

La conjecture était la suivante :
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Conjecture 2.3.1. Soit G un graphe, S et B deux ensembles de som-
mets, k et d deux entiers positifs. Alors il existe un entier ℓ positif tel
que soit :

(1) il existe k chemins entre S et B, à distance au moins d, ou

(2) il existe un ensemble X ⊆ V (G) avec |X| ≤ k−1 tel que n’importe
quel chemin entre S et T contient un sommet à distance au plus
ℓ d’un élément de X.

Regardons le cas d = 1. Dans ce cas, la conjecture affirme qu’il y a
soit k chemins disjoints entre S et B, soit il existe un ensemble X de
sommets de taille k − 1 tel que n’importe quel chemin passe “proche”
d’un point de X.

Il suffit de prendre ℓ = 1 : Menger nous dit que s’il n’y a pas k
chemins disjoints, alors il y a k − 1 sommets qui sont suffisant pour
séparer S de B.

Le cas k = 2 de la conjecture est déjà démontré par Albrechtsen,
Huynk, Jacobs, Knappe et Wollan ; et aussi par Georgakopoulos et
Papasoglu (arXiv :2305.07456). Ça veut dire que, s’il n’y a pas deux
chemins à distance d, il y a un goulot d’étranglement : tout chemin
passe proche d’un seul sommet. Ici, comme le démontrent Georgako-
poulos et Papasoglu, “proche” veut dire “à une distance de pas plus de
272d.”

Nguyen, Scott et Seymour démontrent que le cas k = 3 est déja faux
pour d ≥ 3. Le cas d = 2 peut toujours être correct.

2.4. Théorème de mariage de Hall. Supposons qu’il y a n femmes
etm hommes, qui veulent se marier (en couples un homme, une femme).
Nous imaginons un graphe de mariages possibles. (Les mariages pos-
sibles forment les arêtes.) Pour quels graphes est-ce que toutes les
femmes peuvent se marier ?

Il est évidemment nécessaire que, pour n’importe quel ensemble S
de femmes, le nombre total d’hommes qui sont connectés à au moins
une femme de S, doit être au moins égale à la taille de S.

Le théorème de Hall dit que cette condition est également suffi-
sante. (Le théorème de Hall est démontré par Hall en 1935 ; une ver-
sion équivalente par König et Egerváry en 1931, et elles découlent du
théorème de Menger de 1927.)

Un couplage est un ensemble d’arêtes disjoints (pas de sommets en
commun).

Théorème 2.4.1 (Théorème de Hall). Soit G un graphe biparti, avec
F et H les sommets des deux parties. Il existe un couplage contenant



COURS 5 3

tout sommet de F si et seulement si pour tout ensemble S ⊆ F , le
nombre d’éléments liés à un élément de S est au moins |S|.

Démonstration. Utilisons le théorème de Ford–Fulkerson. Orientons les
arêtes en flèches de F vers H. Ajoutons une source et un but. Mettons
une capacité de 1 sur chaque sommet. Si on arrive à trouver un flot
avec flux net |F |, on a gagné. Si ce n’est pas possible, on peut enlever
un nombre inférieur à |F | sommets pour séparer le graphe. Mettons
que nous pouvons le faire en enlevant F ′ et H ′. Maintenant, F \F ′ est
connecté à au moins |F \ F ′| sommets de H, qui doivent se trouver
dans H ′. Donc, il aurait fallu enlever |H ′|+ |F ′| ≥ |F \F ′|+ |F ′| = |F |
sommets, ce qui donne une contradiction. □

Un autre cas de figure où on utilise le théorème de Hall c’est quand on
a une collection d’ensembles, A1, . . . , An d’un ensemble X, et on veut
choisir ai ∈ Ai avec les ai distincts. (On dira “système de représentants
uniques.”) On peut considérer le graphe avec n sommets d’un côté pour
les ensembles A1, . . . , An, et les éléments de X de l’autre bord, avec une
arête de Ai à x si x ∈ Ai.

Et si on se permet que k des femmes ne se marient pas ? Évidemment,
encore, il est nécessaire que, pour chaque ensemble de s femmes, il y
a au moins s − k hommes qui peuvent se marier avec au moins une
d’entre elles. (Si s−k ≤ 0, la condition est automatiquement satisfaite.)
Encore, cette condition nécessaire est suffisante.

Théorème 2.4.2. Soit G un graphe biparti, avec F et H les sommets
des deux parties. Il existe un couplage qui couvre tous sauf k des som-
mets de F si et seulement si pour tout ensemble S ⊆ F , le nombre
d’éléments liés à un élément de S est au moins |S| − k.

Démonstration. On invente k hommes imaginaires qui sont prêts à se
marier avec n’importe qui. Maintenant, toute ensemble S de femmes a
|S| hommes qui sont prêts à se marier avec elles, donc la condition de
Hall est satisfaite, et toutes les femmes peuvent se marier. Parmi elles,
ceux qui se sont mariées aux hommes imaginaires ne reçoivent pas de
mari. Mais ceci arrive à au plus k d’entre elles. □

Et si on a des universités qui veulent embaucher des postdocs ? Un
postdoc ne peut être embauché que par une seule université, mais une
université a les moyens, il se peut qu’elle souhaite en embaucher plu-
sieurs. Supposons donc que nous avons u1, . . . , un et que ui souhaite
embaucher di postdocs. Que faire ?

C’est très simple : on remplace ui par di sommets u1
i , . . . , u

di
i , et

on fait le même jeu qu’avant. Pour que toutes les universités puissent
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embaucher autant de postdocs qu’elles le souhaitent, il faut que pour
chaque ensemble d’universités, la somme des di soit inférieure ou égal
au nombre total de postdocs qu’elles sont prêtes à embaucher.

Ces autres cas peuvent aussi être déduits directement du théorème
de Ford–Fulkerson.


