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Rappel. Nous avons démontré la dernière fois le lemme cruciale pour
Ford–Fulkerson, qui dit que, si j’ai un flot f dans un graphe G, soit je
peux améliorer f , soit il existe une coupure (S, S) dans G telle que le
flux net de f est égal à c(S, S).

En utilisant ce lemme, nous avons démontré le théorème de Ford–
Fulkerson, qui dit que le flux maximal est égal à la capacité minimale
d’une coupure.

2.2. Flots dans un graphe avec des capacités sur les flèches,
suite. Le théorème de Ford–Fulkerson nous dit comment trouver le
flux net maximal. Est-ce qu’on est satisfait ? — Pas vraiment. Dans le
cadre de ce cours, en particulier, nous espérons un algorithme qui va
nous permettre de trouver un flot ayant le flux net maximal.

Supposons que les capacités sont des entiers. Il s’ensuit que la ca-
pacité minimale d’une coupure est un minimum d’entiers non negatifs.
Donc, on peut commencer avec le flot 0, et à chaque étape améliorer
le flot par un flux net d’au moins 1. (Parce que le montant par lequel
on est autorisé d’augmenter le flux maximal, ϵ, sera lui aussi un en-
tier.) Après un nombre fini d’étapes, on aura retrouvé le flux maximal.
Puisque, à chaque étape, on modifie le courrant dans chaque flèche par
un montant entier, les courrants sont toujours des entiers.

Théorème 2.2.2. Si les capacités des flèches sont des entiers, alors
il existe un flot maximal ayant tout les courrants également des en-
tiers, qu’on peut trouver en faisant un nombre fini d’améliorations en
utilisant le lemme de la dernière fois.

Remarquons qu’il y a très souvent plusieurs flots maximaux, et que
leurs valeurs ne sont pas forcément toutes des entiers. Tout ce qu’on dit
c’est qu’on peut trouver un flot maximal avec les valeurs des courrants
des entiers.

(Si on veut juste savoir que le flux net maximal est un entier, c’est
beaucoup plus facile : il découle directement du théorème de Ford–
Fulkerson.)
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Flèches à capacités réelles. Il est possible de construire un graphe, et
une suite d’améliorations du flux net (produites à partir d’un chemin de
s à b, comme dans le lemme), où, à chaque étape, on fait l’amélioration
maximale qui est permise pour notre choix de chemin (et qui est non
nulle). Exercice (pas facile) : trouver un tel exemple. (Vous avez le
droit de choisir le chemin pour l’augmentation à chaque étape, si c’est
un chemin qui permet une augmentation.)

Il existe de meilleurs algorithmes qui vont terminer même dans ce
cas.

Flèches à capacités rationnelles. Si les flèches ont des capacités ration-
nelles, on peut multiplier par un dénominateur commun et appliquer
l’argument pour les flèches dont les capacités sont des entiers. Tout
marche bien : on conclut qu’il existe un courrant avec flux net maxi-
mal qui peut s’exprimer sur ce même dénominateur commun.

Flèches à capacités infinies. Rien ne change dans la démonstration, s’il
y a des flèches à capacité infinite, pourvu que le flux net maximal est
toujours fini. (Si le flux net maximal est N < ∞, ça ne change rien du
tout de remplacer les bornes infinies par N .)

Plusieurs sources, plusieurs buts. Si on a plusieurs sources, on peut les
connecter à une super-source, et même chose pour plusieurs buts. La
meilleure façon de le faire c’est d’utiliser des flèches à capacité infinie.
Comme ça, couper une flèche qui relie la super-source à une des sources,
ou un des buts à un super-but, nous donne une coupure à capacité
infinie. La coupure minimale est donc une coupure qui sépare la super-
source et le super-but, et qui n’utilise pas les flèches incidentes à la
supersource ou au super-but ; ça fait qu’on peut considérer les coupures
dans le graphe de départ, qui séparent les sources (d’un côté) des buts
(de l’autre côté).

Capacités sur les sommets au lieu des flèches. On peut modéliser cela
en utilisant les capacités sur les flèches. Remplace chaque sommet par
deux sommets et une petite flèche ayant la capacité voulue. (Les flèches
qui entraient à ce sommet entrent dorénavant la source de la petite
flèche, et ceux qui sortaient de ce sommet sortent dorénavent du but de
la petite flèche.) Sur les flèches présentes au départ, mets une capacité
infinie. Là, un flot dans cette graphe sera exactement un flot respec-
tant les capacités des sommets, et donc le flux maximal est la capacité
minimale d’une coupure dans cette graphe. C’est inutile de couper les
flèches présentes au départ, car elles ont une capacité infinie, donc la
capacité d’une telle coupure est infinie. La coupure consiste donc à
couper un ensemble de nouvelles flèches. Dans le graphe de départ, ça
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revient à enlever un ensemble de sommets, et de prendre la somme des
capacités qui y sont associées.

2.3. Application : connexité (théorème de Menger). Soit G un
graphe non orienté, et soient s et b deux sommets distincts. On peut
se poser la question : combien d’arêtes est-ce qu’il faut enlever de G
pour que s et b soient en composantes différentes. On peut aussi poser
la question où on enlève des sommets au lieu des arêtes. Des réponses
à ces questions sont données par le théorème de Menger. Ce théorème
remonte à 1927, tandis que le résultat de Ford–Fulkerson date de 1962.
Mais en utilisant le théorème de Ford–Fulkerson, il est très facile de
démontrer le théorème de Menger

Nous disons que deux chemins de s à b sont disjoints si les seuls som-
mets qu’ils ont en commun sont s, b. Nous disons qu’ils sont indépendants
s’ils n’ont aucune flèche en commun. (Donc deux chemins peuvent être
indépendant sans être disjoints.)

Théorème 2.3.1 (Théorème de Menger). Soient G, s, b, comme ci-
haut. Le nombre minimal de sommets qui séparent s de b est le nombre
maximal de chemins disjoints de s à b. (Pour ce cas, il faut supposer
qu’il n’y a pas d’arête qui va directement de s à b.)
Le nombre minimal d’arêtes qui séparent s de b est le nombre maxi-

mal de chemins indépendants.

Démonstration. Remplace chaque arête de G par deux flèches, qui vont
dans les deux sens, avec une capacité de 1 sur chaque sommet. The flux
net maximal de s à b est égale à la capacité minimale d’un ensemble de
sommets qui sépare s de b. (Nous utilisons la version de Ford–Fulkerson
pour les sommets.) C’est donc cette capacité que nous cherchons. Par la
version intégrale de Ford–Fulkerson, il y a un flot qui réalise le flux net
maximal ayant des courrants entiers. Puisque chaque sommet à part
s, b a une capacité de 1, les seuls courrants possibles sont 0 et 1. Le
condition sur les capacités des sommets fait qu’un flot maximal entier
est composé de (un ou plusiuers) chemins disjoints de s à b.

Pour la version avec les arêtes, au lieu de mettre une capacité de 1
sur chaque sommet, on met une capacité de 1 sur chacune des flèches.
Ici, parce que les capacités sont sur les flèches, les différentes chemins
peuvent se toucher dans un sommet, ce qui explique pourquoi il faut
compter les chemins indépendants. □


