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Rappel. La dernière fois, j’ai mentionné que la formule des longueurs
des équerres nous donne une façon d’échantilloner la distribution uni-
forme sur les tableaux tstandards de forme λ. (Et que, même si on
pourrait utiliser le processus aléatoire développé dans la démonstration
de la formule, il vallait mieux procéder autrement.)

Nous avons établi le deuxième théorème fondamental du jeu de ta-
quin pour les tableaux standards : si on rectifie tous les tableaux stan-
dards de forme ν/λ, le nombre de fois qu’on obtiendra un tableau
particulier dépend uniquement de la forme du tableau.

Nous avons démontré le premier théorème fondamental pour les ta-
bleaux semistandards : c’est à dire que la rectification d’un tableau
semistandard ne dépend pas de l’ordre choisi pour les glissments de
jeu de taquin pendant la rectification. L’idée c’est qu’il est possible de
réétiquetter les cases d’un tableau semistandard : on commence avec
les cases avec l’étiquette 1, et on les numérote de gauche à droite, à
partir de 1. Puis on continue avec les cases avec l’étiquette 2, et ainsi de
suite. La rectification selon les étiquettes semistandards est identique
à la rectification selon les étiquettes standards, et donc la rectification
semistandard est bien définie.

3.7. Les théorèmes fondamentaux et les tableaux semistan-
dards, suite. La dernière fois, nous avons effectivement montré (sans
le dire) que le standardisé de T est dual équivalent à T . (Ce que nous
avons montré est même plus fort : les façon que se déplacents les tuiles
individuelles du standardisé de T sont les mêmes que la façon que se
déplacent les tuiles de T .) Il s’ensuit que tous les remplissages semi-
standards d’une même forme λ sont dual équivalents.

En suite, ça veut dire que chaque classe d’équivalence duale des
remplissages semistandards contient exactement un remplissage qui
donne chaque n’importe quel tableau droite de la bonne forme. Donc, le
nombre de fois qu’apparâıt n’importe quel tableau semistandard dans
la rectification de l’ensemble des tableaux standards de forme ν/λ est
donc le même.
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3.8. Fonctions symétriques. On fixe un nombre infini de variables
x1, x2, . . . .

Une composition faible α de n est une suite infinie d’entrées non
négatives dont la somme est n. (Donc il n’y a qu’un nombre fini d’entrées

non nulles dans un tel α.) Nous écrirons xα pour x
α(1)
1 x

α(2)
2 . . . .

Une fonction symétrique de degré n est une somme (formelle) sur les
compositions faibles de n de la forme

Symn = {
∑
α

cαx
α}

où cα = cβ si α est une permutation de β.
On écrit Sym pour la somme directe Sym0⊕ Sym1⊕ Sym2⊕ . . . .
Par exemple, f =

∑∞
i=1 xi est une fonction symétrique. Sym a un

structure d’anneau : le produit de deux fonctions symétriques (dans le
sens normal) est encore une fonction symétrique. Par exemple, f 2 =∑

i x
2
i +

∑
i<j(xixj + xjxi) est également une fonction symétrique.

Il faut souligner qu’une “fonction symétrique” n’est pas en réalité
une fonction. Elle est une série formelle, et il n’est typiquement pas
possible de substituer des valeurs pour les xi. (Si on veut le faire, on
va typiquement envoyer toutes les variables sauf un nombre fini à zéro,
ce qui simplifie les choses.)

Soit λ une partition, que nous écrivons comme λ = (λ1 ≥ λ2 . . . )
avec un nombre fini d’entrées positives, et un nombre infini de zéros
à la fin (donc, comme composition faible). Écrivons π(λ) pour l’en-
semble des permutations de λ. Par exemple, si λ = (1, 0, 0, . . . ), π(λ) =
{(1, 0, 0, . . . ), (0, 1, 0, . . . ), (0, 0, 1, 0, . . . ), . . . }. Si λ = (2, 1, 0, 0, . . . ), alors
π(λ) = (2, 1, 0, 0, . . . ), (2, 0, 1, 0, . . . ), (1, 2, 0, 0, . . . ), (1, 0, 2, 0, . . . ), . . . .
Maintenant, définissons :

mλ =
∑

σ∈π(λ)

x
σ(1)
1 x

σ(2)
2 . . .

Évidemment, si λ ⊢ n, alors mλ ∈ Symn, et effectivement le nombre
(fini !) des mλ avec λ ⊢ m forme une base linéaire de Symn. L’ensemble
de mλ s’appelle la base monomiale (de Sym, de Symn, . . .).

3.9. Fonctions de Schur. Soit ν/λ une forme gauche. La fonction de
Schur sν/λ est définie par :

sν/λ =
∑

T semistandard de forme ν/λ

xT
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où xT veut dire xnombre de 1 dans T
1 xnombre de 2 dans T

2 . . . . (On dira que le
contenu de T est la composition faible (nombre de 1s dans T , nombre
de 2s dans T , . . .).

sν/λ est une somme (formelle) d’un nombre infini de monômes dans
les variables x1, x2, . . . , mais ce n’est pas immédiatement visible que
sν/λ est symétrique.

Quand même, c’est vrai dans des exemples.

s(1) = x1 + x2 + · · · = m(1)

s(2) = x2
1 + x1x2 + x1x3 + · · ·+ x2

2 + x2x3 + · · · = m(2) +m(11)

s(11) = x1x2 + x1x3 + · · ·+ x2x3 + x2x4 + · · · = m(11)

s(3) = x3
1 + x2

1x2 + x1x
2
2 + x3

2 + · · · = m(3) +m(21) +m(111)

s(21) = x2
1x2 + x1x

2
2 + 2x1x2x3 + · · · = m(21) + 2m(111)

s(111) = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 + · · · = m(111)

La symétrie, nous la démontrerons la prochaine fois.


