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Rappel. La dernière fois, nous avons démontré le théorème de Greene,
qui explique la signification de la forme de P (π), en terme de la taille
maximale de k sous-kots croissants, ou de k suites décroissantes. La
démonstration a été fait en deux étapes : premièrement, nous l’avons
démontré pour mot(P (π)), et ensuite nous avons montré que si deux
permutations sont reliés par une relation élémentaire de Knuth, alors
la taille maximale d’une collection de k sous-mots croissants ne change
pas.

3.7. Formule des longueurs des équerres. Aujourd’hui nous allons
regarder une formule pour fλ, le nombre de tableaux standards de forme
λ.

Pour v une case de λ, l’équerre de v est composée de v, les cases
dans la même ligne à droit de v (le “bras”), et les cases dans la même
colonne au dessus de v (la “jambe”). (Possiblement les noms sont plus
intuitifs si on utilise la convention anglaise.)

Nous écrivons (i, j) pour la case ayant x-coordonnée i et y-coordonnée
j. Nous écrivons hij pour la longueur de l’équerre qui correspond à la
case (i, j).

Théorème 3.7.1. Le nombre de tableaux standards de Young de forme
λ ⊢ n est la suivante :

fλ =
n!∏

(i,j)∈λ hij

Un jeudi de mai, 1953, Robinson visitait Frame à Michigan State
University. Frame a conjecturé le résultat. Robinson ne croyait pas qu’il
puisse exister une formule aussi simple, mais finalement les deux l’ont
démontré ensemble. Samedi, ils sont allés à une rencontre à l’université
de Michigan, où Frame a présenté leur résultat. Thrall était dans la
salle, et a été très surpris, car il l’avait démontré le jour même lui
aussi.

Nous allons donner la démonstration de Greene, Nijenhuis et Wilf.
Définissons F (λ1, . . . , λm) =

n!∏
(i,j)∈λ hij

si λ1 ≥ λ2 ≥ · · · ≥ λm.

La case de λ où est situé n est une des cases maximaux.
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Écrivons F pour F (λ1, . . . , λm) et Fi pour F (λ1, . . . , λi−1, λi−1, λi+1, . . . , λm).
Il suffit donc de démontrer que F =

∑
i Fi. Nous utilisons ici la conven-

tion que nous venons de définir, que si le résultat de soustraire 1 ne
donne pas une partition, alors F de cette suite est nulle.
Nous allons vérifier que 1 =

∑
i Fi/F .

Soit (i, j) une case de λ, pris uniformément au hasard. Une deuxième
case (i′, j′) est pris au hasard dans les cases de l’équerre de (i, j),
différente de (i, j). On répète, choisissant une case au hasard dans
l’équerre de (i′, j′) (pas égal à ce dernier). On répète jusqu’à ce qu’on
tombe sur une case maximale (dont l’équerre est juste elle-même). On
appelle tout se processus un essai.
Soit p((i, j)) la probabilité que ce processus se termine dans la case

(i, j), qui est, par hypothèse, une case maximale. J’affirme que cette
probabilité est Fi/F .

Démonstration : les équerres qui ont changés entre Fi et F sont celles
qui correspondent aux boites dans la même ligne que (i, j), ou dans le
même colonne que (i, j). Il y a aussi un facteur de n qui provient du
fait que n! est remplacé par (n− 1)!.
Donc

Fi

F
=

1

n

∏
1≤k<j

hi,k

hi,k − 1

∏
1≤k<i

hk,j

hk,j − 1

=
1

n

∏
1≤k<j

1 +
1

hi,k − 1

∏
1≤k<i

1 +
1

hk,j − 1

Considérons un essai qui commence à (a0, b0) et passe par (a1, b1), (a2, b2) . . .
pour terminer à (ak, bk) = (i, j).

Appellons les projections verticaux l’ensemble A = {a0, . . . , ak} et
les projections horizontaux B = {(b0, . . . , bk)}. Nous voulons établir la
probabilité qu’un essai qui commence à (a0, b0) ait les projections A et

B. Écrivons pA,B pour cette probabilité.

Lemme 3.7.1. La probabilité qu’un essai qui commence à (a0, b0) ait
les projections verticaux et horizontaux A,B est donné par la formule
suivante :

(1) pA,B =
∏

a∈A\{i}

1

haj − 1

∏
b∈B\{j}

1

hib − 1

Pour voir que l’énoncé est raisonnable, considérons le cas où b0 = j.
Là, le deuxième produit est vide (et donc nous l’interpretons comme
1). Pour que la projection horizontale soit a0, . . . , ak, il faut qu’on s’est
déplacé de (a0, j) à (a1, j) à . . .à (ak, j) = (i, j). A chaque fois, il y avait
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exactement un choix qui marchait dans l’équerre, et donc la probabilité
était

1

ha0j − 1

1

ha1j − 1
. . .

1

hak−1j−1

C’est exactement ce que donne la formule.

Démonstration. Le premier pas doit nous emmener soit à (a0, b1), soit
à (a1, b0). Chacun a la probabilité 1

ha0b0
−1

. La probabilité de continuer

de la façon voulue à partir de (a0, b1) est pA,B\{b0}. La probabilité de
continuer de la façon voulue à partir de (a1, b0) est pA\{a0},B. Donc

pA,B =
1

ha0b0 − 1
(pA,B\{b0} + pA\{a},B)

Par recurrence, nous pouvons supposer que

pA,B\{b0} = (hib0 − 1)RHS(1)

pA\{a0},B = (ha0j − 1)RHS(1)

Donc

pA,B =
hib0 + ha0j

ha0b0 − 1
RHS(1)

Finalement, il faut vérifier que ha0b0 = hib1+ha1j. Il faut just dessiner
les trois équerres et c’est évident. Le lemme est démontré. □

Finissons la démonstration du théorème. La probabilité qu’on a fini
à (i, j) est la somme de toutes les sous-ensembles possibles A,B avec A
un ensemble avec maximum i, et B un sous-ensemble ayant maximum
j, fois 1/n (parce qu’au départ, on a dû avoir choisi (a0, b0).

Par le lemme, la probabilité de finir à (i, j) est

1

n

∑
A,B

pA,B =
1

n

∑
A,B

∏ ∏
a∈A\{i}

1

haj − 1

∏
b∈B\{j}

1

hib − 1

=
1

n

∏
1≤a<i

haj

haj − 1

∏
1≤b<j

hib

hib − 1

C’est ce qu’on appelait Fi/F .


