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Rappel. La dernière fois, nous avons démontré que deux tableaux sont
jeu de taquin équivalents si et seulement si ils ont la même rectification
(ce qui revient à montrer que P (mot(S)) = P (mot(T ))).

J’ai mentionné le fait que deux tableaux de la même forme S et T
sont dual équivalents si et seulement si Q(mot(S)) = Q(mot(T )). C’est
un des sens dans lequel l’équivalence jdt et l’équivalence duale sont
effectivement duales.

J’ai introduit les relations de Knuth, qui expriment l’équivalence jeu
de taquin en termes du mot de lecture. Deux mots sont jeu de taquin
équivalents si on peut transformer l’un dans l’autre par une suite de
transformations de Knuth élémentaires. Celles-ci sont, pour x < y < z,
remplacer un sous mots yxz par yzx, ou vice versa, ou bien remplacer
xzy par xzy ou vice versa.

S et T sont jeu de taquin équivalents si et seulement si leurs mots
de lectures sont Knuth équivalents.

La dernière fois j’ai énoncé le théorème de Greene. Aujourd’hui, nous
allons le démontrer, en utilisant les relations de Knuth. Nous allons
revoir l’énoncé prochainement, mais en premier je vais donner une pro-
position qui nous aidera à le démontrer.

3.6. Théorème de Greene. Pour λ une partition, écrivons λt pour
le transposé de λ. On réfléchit son diagramme de Ferrers autour de la
ligne y = x. Autrment di, les tailles des parties de λt sont les tailles
des colonnes de λ.

Pour π = π(1) . . . π(n) une permutation (ou plus généralement un
mot) on écrira π = π(n) . . . π(1) pour π écrit à l’envers. (Remarquons
que ce n’est pas la même chose que l’inverse de π comme permutation,
que l’on écrit π−1.)

Proposition 3.6.1. Pour π une permutation, si la forme de P (π), Q(π)
est λ, alors la forme de P (π), Q(π) est λt.

Démonstration. Nous pouvons calculer RSK(π) par jeu de taquin à
partir du tableau diagonal. Pour calculer RSK(π), on peut faire exac-
tement la même procédure, après une réflexion dans la ligne y = x. □
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Théorème 3.6.1. Soit π une permutation, dont l’insertion est de
forme λ. Alors la taille du plus grand sous-ensemble des entrées de
π qui peut être exprimé comme réunion de k suites croissantes est
λ1+ · · ·+λk. Pour les suites décroissantes, on fait la même chose avec
les colonnes de λ

Démonstration. Premièrement, remarquons que nous pouvons nous res-
treindre au cas croissant, en utilisant la proposition précédente.

La façon que nous allons démontrer ce cas est la suivante. Nous
considérons l’équivalence de jeu de taquin comme une relation d’équi-
valence sur les permutations (où on voit les permutations comme des
tableaux diagonaux). Nous allons prendre une permutation particulière
dans chaque classe d’équivalence, et nous allons démontrer l’énoncé
pour cette permutation. Ensuite, nous allons démontrer que l’énoncé
reste vrai si on prend une différente permutation dans la classe d’équi-
valence. Pour cette deuxième étape, il suffit de montrer que si une
permutation pour laquelle l’énoncé est vrai est changé par une seule
relation de Knuth, alors il reste vrai.

Donc, pour commencer, quelle permutation prendre ? Bon, la classe
d’équivalence peut être définie comme les permutations ayant la même
rectification, donc on pourrait commencer avec le mot qui correspond
à la rectification.

Considérons par exemple le tableau :
7
2 4 9
1 3 5 6 8

Son mot de lecture est 724913568. La plus longue suite croissante
est censé être de longueur cinq. Il y a plusieurs options, mais 13568
en est une. De façon similaire, la réunion des deux dernières lignes
est évidemment la réunion de deux sous-suites croissantes, et selon le
théorème, elle est de taille maximale.

En général, si S est un tableau standard, les k dernières lignes sont
la réunion de k sous-suites croissantes (ces lignes), et sont de la taille
voulue. Il faut juste vérifier qu’il est impossible qu’il y ait un sous-mot
plus grand qui serait encore la réunion de k suites croissantes.

Pour ce faire, remarquons que les colonnes de S forment, elles, des
suites décroissantes dans mot(S). L’intersection d’une suite croissante
et d’une suite décroissante ne peut être de taille supérieure à 1. Donc,
dans chaque colonne, le nombre de cases qui peuvent contribuer à la
réunion de k suites croissantes est le min de la taille de la colonne
et k. Mais c’est exactement le nombre de cases dans les k premières
lignes. L’énoncé est démontré pour le mot de lecture d’un tableau droit
standard.
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Maintenant, il faut démontrer que si l’énoncé est vrai pour une per-
mutation π, il est également vrai pour une permutation que l’on obtient
à partir de π en appliquant une relation de Knuth.

Supposons que, pour x < y < z, on a π = . . . zxy . . . et σ =
. . . xzy . . . . Nous voulons démontrer que la taille maximale de la réunion
de k sous-mots croissants est aussi grand dans σ que dans π. Là,
c’est vraiment très simple. Considérons par exemple π = 524136 et
σ = 521436. Un sous-mot croissant de π de taille maximale est 136. Et
dans σ, on a aussi 136 qui marche. Pourquoi ? Bon, la différene c’est
que maintenant 4 et 1 sont inversés. Mais aucune sous-mot croissant
n’utilisait à la fois 4 et 1 dans π, parce que dans π ils sont dans le
mauvais ordre. Et ça marche de la même manière si on considérait la
réunion de plusieurs sous-mots au lieu d’un seul.

Maintenant, démontrons que la taille maximale de la réunion de k
sous-mots croissants de π est aussi grande que celle de σ. Dans notre
exemple, le problème serait si on utilisait 14 dans un sous-mot croissant
de σ. Par exemple, mettons qu’on avait choisi comme la plus longue
sous-mot croissante dans σ, 146. Ce n’est plus croissant dans π. Mais
rappelons que nous savons que 14 est suivi de 3, et le 3 est inférieur à
4, mais toujours supérieur à 1. Il s’ensuit donc qu’on peut remplacer le
4 dans notre sous-mot choisi, par le 3, sans causer de problème.

Ça marche super bien... sauf dans le cas où on utilisait déjà le 3 dans
une autre sous-mot croissant !

Par exemple, supposons qu’on avait choisi 23 et 146 comme nos sous-
mots croissants de σ. Je ne peux pas juste remplacer le 4 par le 3, parce
que nous avons déjà besoin du 3. Mais ce que nous pouvons faire, c’est
nous pouvons échanger le 3 et le 4. Dans notre exemple, ça marche.
Mais considérons

σ = 6215347 π = 6251347

(La différence maintenant c’est l’échange du 1 et 5.) Supposons que,
pour σ, nous ayons choisi 234 et 157. Pour π, si on essaye d’échanger le 5
et le 3, ça ne marche pas, car nos sous-mots ne sont plus croissants. Mais
nous pouvons échanger les deux partie finales (dans notre exemple, 34
et 57), sans jamais avoir de problème. Donc les tailles de la réunion de
k sous-mots croissants de σ et de τ sont les mêmes.

Il reste l’autre relation de Knuth pour laquelle il faut démontrer
que ça ne change pas la taille maximale de la réunion de k sous-mots
croissants. L’argument est très similaire, et je ne compte pas le donner.
(Il faut échanger la partie initiale au lieu de la partie finale.) □


