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Version du 17 février 2025.

2. Théorie des graphes

Je suis ici le chapitre 3 de Modern Graph Theory, de Béla Bollobás.

2.1. Flots dans un graphe. Soit G un graphe orienté fini. Nous
désignons deux sommets particuliers, s et b, pour source et but. Un flot
dans G est une fonction f des flèches de G vers les réels non négatifs,
tel que, à chaque sommet v ̸= s, b, on a∑

e−→v

f(e) =
∑
v

e−→
f(e).

L’idée est que f indique combien d’eau, d’électricité, etc., utilise la
flèche e, et qu’il n’est pas permis d’avoir des fuites (ou des ajouts) sauf
à s, b. On va parler de f(e) comme le courant qu’assigne f à e. On écrit
F(G) pour les flots dans G.

Il s’ensuit que le courant (net) qui entre à s doit sortir à b :

0 =
∑

e−→
f(e)−

∑
e−→

f(e)

=
∑
v

∑
e−→v

f(e)−
∑
v

∑
v

e−→
f(e)

=
∑
y

e−→b

f(e)−
∑
b

e−→y

f(e)−
∑
s

e−→y

f(e) +
∑
y

e−→s

f(e)

Et donc : ∑
y

e−→b

f(e)−
∑
b

e−→y

f(e) =
∑
s

e−→y

f(e)−
∑
y

e−→s

f(e)

(Remarquons qu’il peut y avoir des flèches qui vont vers s ou des
flèches qui sortent de b. Si ce n’est pas le cas, deux des sommes disapa-
raissent.) On cette quantité le flux net de f . On écrit Fm(G) pour les
flots de flux net m.
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2.2. Polytope de flots. (Pour cette sous-section, on peut regarder les
travaux de Yip, Morales, . . .)

Supposons que G un graphe orienté sans cycles orientés.

Théorème 2.2.1. Fm(G) est un polytope.

Qu’est-ce que cela veut dire : simplement que Fm(G) ⊆ RE, E étant
l’ensemble des flèches, et il y a un nombre fini de flots, f1, . . . , fr, tel que
Fm(G) est l’envelope convexe de f1, . . . , fr. Plus précisément encore, ça
veut dire que f ∈ Fm(G) si et seulement si f = a1f1 + · · ·+ arfr, pour
ai ∈ R≥0,

∑
i ai = 1.

Comment trouver ces fi ?
On appelle route une suite de flèches qui mènent de s vers b. Un

exemple d’un flot dans F1(G) est de donner le poids 1 à chaque flèche
dans la route, et 0 ailleurs. Puisque G est fini et n’a pas de cycles
orientés, il y a un nombre fini de routes. On peut prendre m fois les
flots associées aux routes pour les fi.

Démonstration. La démonstration se fait par récurrence sur le nombre
de flèches de G. Soit f ∈ Fm(G). Choisissons une flèche avec le poids

minimal positif, disons x
e−→ y. Nous allons maintenant trouver une

route qui passe par e, et dont tous les flèches ont une valeur non nulle,
et donc supérieur ou égal à f(e). Il suffit de remarquer que si f(e) entre
dans y, il doit aussi sortir, donc il y a une flèche qui part de y avec un
poids non nul. On continue comme ça et, puisqu’il n’y a pas de cycles
orientés, on arrive forcément à b. On fait la même chose à l’envers pour
continuer la route à l’envers jusqu’à s. Nous avons maintenant une
route qui passe par e, et où toutes les flèches ont un poids supérieur
ou égal à f(e). Soit f1 le flot dans F1(G) qui correspond à cette route.
Alors f − f(e)f1 est un flot dans Fm−f(e)(G − e), qui utilise moins de
flèches. Nous pouvons donc exprimer :

f − f(e)f1 = (m− f(e))(b1g1 + · · ·+ bsgs)

où g1, . . . , gs sont les flots qui correspondent aux routes dans G − e
(qui sont également des routes dans G), où bi ≥ 0,

∑
bi = 1

Alors :

f = f(e)f1 + (b1(m− f(e))g1 + · · ·+ bs(m− f(e))gs)

= (f(e)/m)mf1 + b1((m− f(e))/m)mg1 + . . . bs((m− f(e))/m)mgs

Il faut vérifier que f(e)/m + sum(bi(m− f(e))/m) = 1. Ça découle
directement du fait que

∑
i bi = 1. □
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2.3. Flots dans un graphe avec des capacités sur les flèches. G
est encore orienté, et peut de nouveau avoir des cycles orientés.

Pour chaque flèche e, nous supposons maintenant qu’elle a une capa-
cité c(e), et nous cherchons à comprendre les flots tels que 0 ≤ f(e) ≤
c(e).

Pour des ensembles de sommets X, Y , écrivons E(X, Y ) pour les
flèches qui vont d’un sommet dans X vers un sommet dans Y .

Pour n’importe quelle fonction g sur les flèches, nous allons écrire
g(X, Y ) pour

∑
e∈E(X,Y ) g(e).

Si S est un sous-ensemble des sommets contenant s mais pas b,
écrivons S pour le complémentaire de S, et appelons E(S, S) une cou-
pure. Si on enlève les flèches d’une coupure de G, il n’y a plus de flots
non nuls. Et inversement, un ensemble K de flèches ayant la propriété
que G \K n’a plus de flots, contient forcément une coupure. (On peut
définir S comme l’ensemble des sommets accessibles par une série de
flèches à partir de s.)

Lemme 2.3.1. Le flux net d’un flot peut être calculé comme f(S, S)−
f(S, S).

Il s’agit d’une généralisation du fait que le flux net est la somme du
courant qui sort de s moins ce qui arrive à s (où S = {s}) et du fait
que c’est ce qui entre à b moins ce qui part de b (où S = V (G) \ {b}).
Démonstration. La démonstration est presque la même.

m =
∑
s

e−→
f(e)−

∑
e−→s

f(e)

=
∑

v∈S,v
e−→
f(e)−

∑
v∈S,

e−→v

f(e)

=
∑

v∈S,w∈S,v
e−→w

f(e)−
∑

v∈S,w∈S,w
e−→v

f(e)

□

Il s’ensuit que c(S, S) pour n’importe quelle coupure, borne le flux
net de n’importe quelle flot. Puisqu’il y a un nombre fini de coupures,
il y a une coupure minimale.

Théorème 2.3.1 (Théorème de Ford–Fulkerson, dit ≪ max flow min
cut ≫). Le flux net maximal d’un flot dans un graphe G avec capacités
données par c, est égale à la capacité minimale d’une coupure.


