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Rappel. La dernière fois, j’ai démontré que si S et T ont le même mot
de lecture, ils sont jeu de taquin équivalents.

Nous avons analysé les équivalences duales de taille 3. Un tableau
ayant mot de lecture 132 est dual équivalent à celui de la même forme
et mot de lecture 231 ; un tableaux ayant mot de lecture 312 est dual
équivalent à celui de la même forme et mot de lecture 213.
Ça nous permet de trouver beaucoup d’autres paires de tableaux qui

sont dual équivalents : si on prend deux tableaux dual équivalents, on
peut ajouter le même tableau “après” les deux (ou “avant” les deux)
pour obtenir d’autres tableaux dual équivalents.

En utilisant ces équivalences duales, nous avons pu démontrer que si
S et T sont de la même forme droite, ils sont dual équivalents.

Nous avons vu une façon différente de concevoir la rectification. La
rectification de S de forme λ/mu est déterminé par un tableau standard
T de forme µ. Ce que nous avons vu c’est que rectifier S par T , c’est
la même chose que “dérectifier” T en utilisant S (c’est-à-dire, faire les
glissements inverses dans le 1 de S, le 2 de S, et ainsi de suite, et placer
les entrées de S dans les cases qui sont vidées).

Maintenant, l’équivalence duale de T et T ′ implique que la rectifi-
cation (conçue de cette autre façon) procédera d’exactement la même
manière peu importe si on utilise T ou T ′. Le théorème fondamental
du jeu de taquin est démontré.

3.4. Équvalence duale, suite.

3.4.7. Deux tableaux sont jeu de taquin équivalents si et seulement si
ils ont la même rectification. Si S et T ont la même rectification, alors
évidemment ils sont jeu de taquin équivalents. Inversement, supposons
que S et T sont jeu de taquin équivalents. Ça veut dire qu’il y a une
suite S = X0, X1, . . . , Xr = T où Xi et Xi+1 sont reliés par un glisse-
ment de jeu de taquin (dans un sens ou l’autre). Il suffit de démontrer
que chacun des Xi a la même rectification. Supposons que c’est un
glissement classique qui va de Xi+1 vers Xi. Alors en rectifiant Xi+1 en
commençant par ce glissement, on arrive à Xi, et en donc les rectifica-
tions sont les mêmes.
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3.5. Relations de Knuth. Nous continuons de travailler avec les ta-
bleaux standards (ou, plus généralement, avec des tableaux où il n’y a
pas de répétition).

Nous avons vu la dernière fois que si deux tableaux ont le même mot
de lecture, ils sont jeu de taquin équivalents. Mais comment caractériser
les mots de lecture qui sont jeu de taquin équivalents ? La réponse est :
les relations de Knuth. Soit x < y < z. Si deux mots diffèrent puisque
l’un a yxz et l’autre yzx, nous disons qu’ils sont reliés par une relation
de Knuth du premier type, et si l’un a xzy et l’autre a zxy, nous disons
qu’ils sont reliés par une relation de Knuth du deuxième type.

Théorème 3.5.1. T et S sont jeu de taquin équivalents si et seulement
si leurs mots de lectures sont reliés par une suite de relations de Knuth.

Démonstration. Que T et S soient jeu de taquin équivalents revient
à dire que les mots de lecture de T et de S, écrits sur la diagonale
nord-ouest – sud-est sont jeu de taquin équivalents, et par le résultat
de 3.4.7 ci-haut, ça revient à dire qu’ils on la même rectification.

Pour démontrer un sens du théorème, il suffit donc de montrer que
si deux mots sont reliés par une relation de Knuth, ils auront la même
rectification. C’est évident : il faut just commencer la rectification avec
les trois lettres où intervient la relation de Knuth ; on voit bien qu’à
partir de la, la rectification sera la même.

Pour démontrer l’autre sens, on suppose que T et S sont jeu de taquin
équivalents, et comme nous avons déjà dit, ça implique que les tableaux
diagonaux formés des mots de S et de T auront la même rectification.
Ces rectifications, on peut les calculer en utilisant l’insertion. Il est
donc suffisant de montrer que si T est un tableau, et x une lettre, le
mot de T suivi par x est Knuth équivalent à l’insertion de x dans T .

Supposons que la première ligne de U soit p1, . . . , pr. Et supposons
que x va tasser pi, car pi−1 < x < pi. Alors, les relations de Knuth du
premier type nous permettent de passer de p1 . . . prx à p1 . . . pixpi+1 . . . pr.
Maintenant, les relations de Knuth du deuxième type nous permettent
de faire passer le pi avant p1, . . . , pi−1. Maintenant, le même argument
nous permet de modéliser l’action de l’insertion de pi dans la deuxième
ligne en utilisant les relations de Knuth, et ainsi de suite. □

3.6. Théorème de Greene.

Théorème 3.6.1. Soit π une permutation, dont l’insertion est de
forme λ. Alors le plus grand sous-ensemble des entrées de π qui peut
être exprimé comme réunion de k suites croissantes est λ1 + · · · + λk.
Pour les suites décroissantes, on fait la même chose avec les colonnes
de λ


