
COURS 18

Version du 27 mars 2025.

Rappel. La dernière fois, nous avons revu certaines des notions qui
avaient déjà été introduites, car il semblait que celles-ci n’étaient pas
tout à fait claires pour tout le monde.

Nous avons parlé du fait qu’on peut calculer P (π) en utilisant le jeu
de taquin (car le jeu de taquin peut calculer l’insertion). J’ai ajouté
cette discussion dans les notes du cour 16, parce qu’ils sont plus à leur
place là.

J’ai mentionné que si P (π) et Q(π) sont de forme λ, alors λ1 est la
longueur de la plus grande sous-suite croissante de π, et la longueur
de la première colonne est la longueur de la plus grande sous-suite
décroissante. Les démonstrations viendront. Ça aussi, j’ai ajouté aux
notes du cours 16.

J’ai introduit le “glissement jeu de taquin inverse.”
J’ai introduit la notion de “jeu de taquin équivalence.” Deux ta-

bleaux sont jeu de taquin équivalents si on peut transformer l’un dans
l’autre en appliquant une suite de glissements (permis) et de glisse-
ments inverses (permis).

Nous avons regardé le cas des tableaux de taille deux. On peut dis-
tinguer les classes de jeu de taquin équivalence en regardant le “mot
de lecture” (on lit les entrées comme on lit un texte en français).

La question a été soulevée la dernière fois : est-ce que deux ta-
bleaux ayant le même mot de lecture sont jeu de taquin équivalents ?
La réponse est oui. Soit T un tableau. En appliquant des glissments, on
peut séparer les lignes de T , de telle sorte qu’elles deviennent comme
les marches d’un escalier (une ligne verticale n’intersecte qu’une seule
marche). Ensuite, on peut introduire une séparation entre les marches.
On peut maintenant incliner chacune des “marches” pourqu’elle de-
vient diagonale. Au finale, on a converti T à un tableau de forme dia-
gonale, avec le mot de lecture écrit dans les cases du nord-ouest au
sud-est. Puisqu’on peut le faire pour n’importe quel T avec le même
mot de lecture, on peut convertir T à n’importe quel autre tableau
ayant le même mot de lecture. (Je souligne que l’inverse est faux : le
jeu de taquin peut changer le mot de lecture, si la taille du tableau est
supérieure à deux.)
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Nous avons commencé l’étude des tableaux dual équivalents. (Atten-
tion : il y a maintenant deux notions différentes d’équivalence, l’équi-
valence jeu de taquin et l’équivalence duale. Il ne faut pas les mélanger.)
Deux tableaux standards S, T sont dits “dual équivalents” si après
n’importe quelle suite de glissements et de glissements inverses (per-
mis), appliqués à la fois à S et à T , les deux tableaux que l’on obtient
ont la même forme. Quand je dis “permis,” je veux dire que si la forme
est λ/µ, alors je fais un glissment jdt dans une case maximale de µ, ou
bien un glissement inverse dans une case minimale du complément de
λ. Et si à un moment donné, les formes deviennent différentes, alors
les tableaux n’étaient pas dual équivalents, et j’arrête. Mais s’ils on
toujours la même forme, les tableaux sont dual équivalents.

Il n’y a pas de tableaux dual équivalents de taille 2. Si on commençait
avec deux tableaux différents de la même forme, il faudrait que le mot
de lecture de l’un soit 12, et de l’autre 21. Donc, en les rectifiant,
on obtient dans un cas le rectangle horizontal, et dans l’autre cas le
rectangle vertical. Puisque les formes deviennent différentes, ils ne sont
pas dual équivalents.

3.4. Équivalence duale, suite.

3.4.2. Les tableaux de taille trois. Considérons les tableaux standards
de taille trois. Le mot de lecture ne change généralement pas lorsqu’on
fait un glissment jdt, mais il peut changer. On se convainc qu’il change
uniquement lorsque les trois cases remplies sont en forme de L ou L
inversé. Lorsqu’on fait jdt là, 312 change en 132, et vice versa ; 213
change en 231 et vice versa. Puisqu’on ne peut pas avoir un mot de
lecture 123 ou 321 en forme de L ou L inversé, ces mots de lecture ne
changent jamais.

Maintenant réfléchissons à ce qui se passe si on a deux tableaux de la
même forme ayant mot de lecture 312 ou 213. Ils gardent évidemment la
même forme jusqu’au moment où il faut comparer le 2 et le 3. Pourque
cela se passe, il faut qu’on ait dans une forme de L. Mais là, le fait qu’il
y a aussi la case avec le 1 nous sauve ! On passe, dans les deux cas, à
des tableaux de forme L inversé, avec mots de lecture respectivement
132, 213. Et le jeu continue, jusqu’au moment où il faut comparer le 1
et le 2, et la même chose se produit à l’envers : on passe de la forme
“L-inversé” à la forme L.

Conclusion : un tableau ayant mot de lecture 213 est dual équivalent
au tableau de la même forme avec mot de lecture 312 ; et un tableau
ayant mot de lecture 132 est dual équivalent à un tableau ayant mot
de lecture 231.
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3.4.3. Les équivalences duales élémentaires. Soient S et T deux ta-
bleaux de taille trois dual équivalents, de forme λ/µ.

Soit X un tableau standard de taille p, de forme µ/ν, et soit Y un
tableau standard de taille q, de forme ρ/λ.

Alors, on peut en former deux grands tableaux S ′, T ′ de taille p+3+q,
de forme ρ/ν : on met X dans µ/ρ, on met S + p ou T + p dans λ/µ,
et on met Y + p+ 3 dans ρ/λ.

Les tableaux S ′, T ′ sont standards.

Lemme 3.4.1. S ′ et T ′ sont dual équivalents.

Démonstration. Je fais agir un glissement jdt sur S ′ et T ′. Je peux le
voir comme, dans un premier temps, faire un glissement dans X (qui
aura le même effet dans S ′ et T ′), puis dans S, T (ce qui conserve la
forme, car S, T sont dual équivalents), ce qui laisse une case vide à
combler au le même endroit, et donc le processus se termine avec les
mêmes déplacements dans Y .

L’argument pour les glissements jdt inverses est le même. □

3.4.4. Deux tableaux droites de la même forme sont dual équivalents.
Il suffit de démontrer qu’il y a une chaine d’équivalences élémentaires
qui les relie. La démonstration se fait par récurrence sur la taille. Pour
les tailles 1 et 2 c’est trivialement vrais, et nous avons déjà considéré la
taille trois, ou les deux remplissages de la forme (2, 1) sont effectivement
dual équivalents, tandis qu’il n’y a qu’un seul remplissages des formes
(1, 1, 1) et (3).

Soit λ ⊢ n avec n > 3. Soit T, S deux tableaux standards de forme
λ. Si T, S ont n dans la même case, on définit T ′, S ′ en enlevant n. Par
recurrence, ces deux tableaux sont liés par une suite d’équivalences
élémentaires, auxquelles il suffit de rajouter le n pour obtenir une suite
d’équivalences élémentaires entre T et S.

Supposons maintenant que T, S ont n dans des cases différents, x et
y. Soit z une case qui est maximale une fois qu’on a retiré x et y, et
qui est entre ces deux.

Soit U un tableau avec n dans la case x, n−1 dans la case y, et n−2
dans z. Soit V le tableau avec n et n− 1 échangés.

Maintenant, par récurrence, comme nous avons déjà vu, T et U ,
ayant n dans la même case, sont liés par une suite d’équivalences duales.
De façon similaire, S et V sont dual équivalents. Mais U et V sont liés
par une équivalence dual élémentaire. Le résultat est démontré.

3.4.5. Deux façons différentes de rectifier. La façon classique de recti-
fier un tableau standard S de forme λ/µ dépend du choix d’une suite
de cases de µ, où la première est maximale, la deuxième maximale une
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fois la première enlevée, et ainsi de suite. On peut spécifier ce choix
en utilisant un tableau standard T de forme µ ! L’entrée maximale, la
taille de µ (que j’écris |µ|), indique la case où commencer le premier
glissement, l’entrée |µ| − 1 indique la case où commencer le prochain
glissment, et ainsi de suite.

Pour exécuter la rectification codée par T , on peut procéder d’une
manière légèrement différente de ce qu’on a déjà vu. Effectivement, ce
que je vais redéfinir est la façon de penser le glissement d’un remplissage
S de λ/µ dans une case maximale de µ. Je mets une étoile dans la case
maximale, et j’essaie de l’échanger, successivement, avec chaque entrée
de λ/µ, en ordre de 1 à |λ/µ|. où je n’ai le droit de les échanger que
s’ils sont adjacents.

Lemme 3.4.2. Cette description revient à la même chose que la défini-
tion classique de glissment, où à chaque fois on choisit l’entrée voisine
la plus petite.

Démonstration. Si ∗ est adjacent à a et b, avec a < b, les échanges avec
1 à a− 1 ne sont pas permises, et la première échange permise est celle
avec a, donc on l’exécute, et on continue. C’est exactement ce qu’on
aurait fait en utilisant la définition classique. □

Maintenant, nous voyons que la rectification de S codée par T consiste
à essayer d’échanger chacun des entrées de T avec chacun des entrées
de S. L’intérêt c’est que ce n’est pas nécessaire de les faire selon l’ordre
initialement prévu. Si on suit l’ordre qui correspond à la définition
classique, dans un premier temps, on échange le |µ| dans T avec les
éléments de S en ordre, puiss le |µ| − 1 de T avec les éléments de S, et
ainsi de suite. Mais pour savoir ce qui va se passer à le 1 de S, il suffit
de l’échanger avec chacun des éléments de T en ordre (décroissant). En-
suite, pour savoir ce qui se passera au 2, il faut l’échanger avec chacun
des éléments de T . Et ainsi de suite.

(Effectivement, on peut faire quelque chose d’encore plus général :
il suffit de s’assurer qu’avant d’essayer d’échanger s dans S et T dans
T , on a déjà fait les échanges de tous les autres s′ ∈ S et t′ ∈ T avec
s′ ≤ s et t′ ≤ t.)

3.4.6. Théorème fondamentale du jeu de taquin. Supposons que nous
ayons un tableau standard S de forme gauche λ/µ. En choisissant un
remplissage standard T de forme µ, nous spécifions une façon de faire
la rectification de S. Mais, en utilisant les résultats de la dernière sous-
section, au lieu de, dans un premier temps faire le glissment dans |µ|,
puis dans |µ| − 1, etc, nous arrivons au même résultat si nous faisons
premièrement un glissement inverse de T vers le 1 dans S, puis un
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glissement inverse de T vers le 2 de S, et ainsi de suite. Soient T, T ′

deux remplissages différents de µ. Parce que T, T ′ sont dual équivalents,
leur forme évoluera de la même manière lorsqu’on fait cela. Mais ça veut
dire exactement que les endroits où il faudra placer le 1 de S, le 2 de
S, et ainsi de suite dans la rectification, sont les mêmes si on utilise T
ou T ′. La rectification est donc bien définie !


