
COURS 16

Version du 27 mars 2025.

Rappel. La dernière fois, nous avons parlé encore un peu de la ques-
tion de la borne supérieure sur le nombre d’offres faites en moyenne
par l’algorithme Gale-Shapley.

Nous avons aussi analysé le problème du collectionneur des vignettes
(ou ≪ coupons ≫), ce qui était une étape nécessaire pour l’analyse.

Nous avons commencé à regarder les tableaux. J’ai défini les dia-
grammes de Ferrers, les tableaux standards, semi-standards, et crois-
sants.

J’ai introduit la correspondance de Robinson–Schensted, qui nous
permet de passer des permutations de {1, . . . , n} aux paires de tableaux
standards, de la même forme, de taille n.

À partir d’un permutation π, on définit un tableau P (“tableau d’in-
sertion”) par un processus d’insertion de π(1), π(2), . . .. On définit Q
(“tableau d’enregistrement”) qui enregistre la croissance de P .

Nous avons également vu qu’à partir de (P,Q), il est possible d’in-
verser le processus d’insertion pour déduire quelle était la permutation,
ce qui fait que l’application définie par l’algorithme est bijective.

3.2. Correspondance de Robinson–Schensted, suite. À partir
de la correspondance, on déduit :∑

λ⊢n

f 2
λ = n!,

où on écrit fλ (notation standard) pour le nombre de tableaux stan-
dards de forme λ.

(La formule pour fλ est appelée la formule des longueurs des équerres
(≪ hook length formula ≫). Pour chaque bôıte de λ, on considère
l’équerre, qui est composée de la case elle-même, toutes les cases à
droite dans la même ligne, et toutes les cases plus hautes dans la même
colonne. Alors fλ = n!/le produit des longueurs des équerres.

3.2.1. Interprétation de la forme de P (π), Q(π). Si P (π) et Q(π) sont
de forme λ, alors λ1 est la longueur de la plus grande sous-suite crois-
sante de π, et la longueur de la première colonne est la longueur de la
plus grande sous-suite décroissante. Les démonstrations viendront.
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3.2.2. Variante : on remplace les permutations de {1, . . . , n} par les
mots sur l’alphabète {1, . . . , n}. Qu’est-ce qui va se passer si on rem-
place la permutation par un mot quelconque ? Tout se passe de la même
manière ! Sauf que le tableau P est maintenant semi-standard. On doit
être clair sur les règles : lorsqu’on insère i, l’élément qu’on va tasser
(au besoin) est le plus petit élément strictement supérieur à i.

Théorème 3.2.1. La correspondance de Robinson–Schensted définit
une bijection entre les mots de longueur m sur l’alphabète {1, . . . , n}
et les paires de tableaux (P,Q) de la même forme λ ⊢ m, où P est
semistandard et Q est standard.

3.3. Jeu de taquin. Définition de jeu de taquin. On commence avec
un tableau gauche semistandard de forme λ/µ. On choisit une case
maximalement nord-est de µ. Ça veut dire que c’est une case qu’on
peut enlever de µ pour produire de nouveau une forme droite.

On y déplace le plus petit des entrées voisines, et on répète jusqu’à
ce que la case vide est maximale dans λ. Si les deux entrées sont égales,
on préfère le voisin d’en haut au voisin d’à droite. (Sinon, on briserait
la définition de tableau semistandard.)

La rectification d’un tableau gauche est le résultat de faire des glis-
sements jusqu’à ce que la forme est droite.

Théorème 3.3.1. La rectification d’un tableau gauche semistandard
ne dépend pas de la suite de glissements choisie.

Nous allons bientôt voir la démonstration, mais pas aujourd’hui.
Cette idée de rectification nous permet de donner une différente in-

terprétation de l’insertion que nous avons vue la dernière fois.

Proposition 3.3.1. Il est équivalent d’insérer x dans T , ou de faire la
chose suivante : on déplace T d’un cran vers le haut, on ajoute x sur
la première ligne, à droite de T , et on rectifie.

Remarquons que le théorème n’est pas pertinent, car il n’y a pas de
choix pour comment faire le jeu de taquin.

La démonstration s’est fait au tableau (et consiste à comparer la
rectification à l’insertion). J’ajouterai un exemple écrit à la main.

Il s’ensuit du fait qu’on peut calculer l’insertion en utilisant le jeu de
taquin, qu’on peut déterminer le tableau d’insertion de la correspon-
dance RSK en utilisant le jeu de taquin.

Corollaire 3.3.1. Si π est une permutation, on met les entrées de π
sur une diagonale, avec π(n) en bas à droite, et π(1) en haut à gauche.
La rectification de ce tableau donne P (π).
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Démonstration. On rectifie par lignes, ce qui produit l’effet d’insérer
π(1), puis π(2), et ainsi de suite. Par définition, le résultat de cette
suite d’insertions est P (π). □

3.3.1. Insertion par colonnes. Au lieu d’insérer par lignes, on peut
insérer par colonnes. Lorsqu’on insère x dans un colonne, l’élément
tassé est le plus petit qui est faiblement supérieur à x. (C’est différent
de la règle pour les rangées, où on tassera le plus petit élément stricte-
ment plus grand.)

Écrivons lx(T ) pour le résultat d’insérer x par lignes, et cx(T ) pour le
résultat de l’insérer par colonnes. Alors cxly(T ) = lycx(T ). Cela découle
du fait que ça revient à rectifier un tableau (avec x en bas à droite et
y à gauche en haut) de deux manières différentes.

3.3.2. Produit sur les tableaux. On peut définir un produit sur les ta-
bleaux de forme droite. Pour calculer S ∗ T , on met S à gauche et au
dessus de T , et puis on rectifie. Pour que cette oopération soit bien
définie, il faut que nous sachions que la rectification est bien définie. Le
produit est associatif, car calculer (S ∗ U) ∗ T ou S ∗ (U ∗ T ) revient à
rectifier le tableau avec S, U , T en position diagonale (du nord-ouest
au sud-est) de deux manières différentes.


