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Rappel. La dernière fois, nous avons reparlé un peu de la variante
où on a le droit de choisir ses plantes d’intérieur, pour souligner que
l’analyse que nous avons fait la fois d’avant était correct. J’ai mentionné
que Knuth analyse, lui, une variante où chacun a une liste restreinte
de personnes avec qui il est prêt à se marier (sans donner davantage
de détails). L’idée est différente, car on suppose toujours que tout le
monde sera marié. Il n’est pas surprenant que, avec cette limitation, il
soit possible qu’il n’y ait aucun système stable possible. Knuth explique
comment modifier Gale-Shapley pour déterminer s’il existe un mariage
stable sous cette contrainte supplémentaire (mais je préfère passer à
autre chose).

Nous avons obtenu une borne supérieure sur le nombre d’offres qui se-
ront fait en moyenne dans l’algorithme Gale-Shapley, si les préférences
sont aléatoires. Le déroulement était tout à fait controlé par une suite
aléatoire des femmes, chacun prise uniformément au hasard, et l’algo-
rithme se termine au moment que la dernière femme apparâıt sur la
liste. La borne est donc donné par la longueur attendu d’une liste avec
les entrées prises uniformément au hasard, avant qu’on arrive à voir
toutes les n entrées possibles.

2.10. Borne supérieure sur le nombre d’offres qui seront faites
en moyenne, suite. Comme rappel, et exemple, considérons le dérou-
lement de l’algorithme avec 4 hommes et 4 femmes, et supposons que
chacune des femmes préfèrent h1 > h2 > h3 > h4. Soit la suite aléatoire
de femmes la suivante :

4, 3, 4, 2, 3, 4, 3, 1

h1 fait une offre à femme f4. h2 fait une offre à f3. h3 fait une offre
à f4 mais est refusé, donc il fait une offre à f2. h4 fait une offre à f3
mais est refusé, donc il fait une offre à f4, mais il est refusé, il fait
une offre “redondante” à f3 (c’est une offre qui ne se ferait pas dans
Gale–Shapley), avant de faire une offre à f1.
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Nous “déduisons” les préférences suivantes :

h1 :f4

h2 :f3

h3 :f4 > f2

h4 :f3 > f4 > f1

Maintenant, on considère le déroulement si les femmes préfèrent

h2 > h4 > h3 > h1.

(J’ai fait ce choix pour une raison particulière.)
h1 fait une offre à f4. h2 fait une offre à f3. h3 fait une offre à f4, qui

le préfère, et c’est donc h1 doit faire une offre à f2. Maintenant h4 fait
une offre à f3, rejetée, et en suite à f4, qui le préfère. Elle rejette h3,
qui doit faire une offre à f3 rejetée, avant de faire une offre à f1.

h1 :f4 > f2

h2 :f3

h3 :f4 > f3 > f1

h4 :f3 > f4

Nous constatons que cette fois, aucune des offres n’était redondante,
mais dans les deux cas (indépendamment des préférences des femmes)
l’algorithme (avec les offres redondantes) s’est déroulé avec 8 offres,
avant l’apparition de la femme finale, ce qui signale que tous les femmes
ont reçu une offre, et donc que tout le monde peut se marier.

La chose qu’il nous restait de la dernière fois, était de voir combien
de temps il prend en moyenne pour que toutes les femmes apparaissent
sur la liste.

Supposons qu’il y a n options, et nous en avons déjà vu i parmi ces
options. Alors le temps qu’il nous faudra pour voir l’i+ 1-ième, c’est
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On prend maintenant la somme pour i = 0, . . . , n− 1, et on obtient
un temps moyen d’attente de n( 1

n
+ 1

n−1
+· · ·+ 1

1
). Comme nous avons vu

la dernière fois, c’est très proche de l’intégrale
∫ n+1

1
n
x
dx = n ln(n+1) ≈

n lnn.
En moyenne, le nombre d’offres que devra faire chaque homme est

borné par lnn — beaucoup moins que le nombre total des femmes.

3. Combinatoire des tableaux

Ma source principale sera le troisième chapitre du livre de Sagan,
“The symmetric group,” même si nous n’allons pas vraiment aborder
les liens avec le groupe symétrique.

3.1. Définitions initiales. Soit λ = λ1 ≥ λ2 ≥ · · · ≥ λr une partition
de n, c’est-à-dire que λ1 + λ2 + · · ·+ λr = n.
Le diagramme de Ferrers est dessiné avec λ1 cases sur la première

ligne, λ2 sur la deuxième ligne, et ainsi de suite. Chaque fois, les cases
sont jusitifiées à gauche. J’utiliserai la convention française (ou franco-
californienne) selon laquelle la première ligne est en bas.

Un tableau de Young standard est un remplissage des n cases par
les nombres de 1 à n, avec chaque entrée apparâıt une fois, et où les
entrées sont croissantes quand on monte dans une colonne où si on lit
de gauche à droite dans une ligne.

On peut aussi voir un diagramme de Young standard comme une
châıne de relations de couverture dans le poset de Ferrers : c’est un
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poset sur les partitions, où µ > λ is les cases de mu contiennent les
cases de λ. (D’ailleurs, c’est encore un treillis distributif. Exercice :
comment décrire ∨ et ∧ ?)

Un tableau T correspond à la châıne ∅ < forme(T≤1) < forme(T≤2) . . . .
Un tableau (de Young) semistandard est un remplissage où les entrées

sont strictement croissantes dans les colonnes et faiblement croissantes
dans les lignes.

Un tableau croissant est un remplissage où les entrées sont stricte-
ment croissantes dans les lignes et les colonnes (mais il peut y avoir des
répétitions et des sauts). Un tableau standard est un cas très particulier
d’un tableau croissant.

3.2. Correspondance de Robinson–Schensted. C’est une corres-
pondance entre les permutations de n et les paires de tableaux stan-
dards de la même forme, et de taille n.

La correspondance marche de cette manière : je lis les entrées de π,
et je les insère un par un dans un tableau standard, P . À chaque fois,
je l’insère dans la première ligne, à l’endroit où il convient pour que
la ligne reste croissante. Si c’est à la fin de la ligne, l’insertion a réussi
et j’ai fini. Sinon, l’insertion tasse une entrée de la première ligne (la
première qui lui est supérieure), qui doit être à son tour insérée dans
la deuxième ligne, et ainsi de suite.

Chaque insertion produit un tableau (semi)standard. (Ce n’est pas
standard, parce que les entrées ne sont pas les entiers de 1 à n.) Ce
n’est pas totalement évident. L’ajout à la première ligne ne pose pas de
problème, mais lorsqu’on tasse une entrée et on doit la réinsérer dans
la ligne d’après, on pourrait se questionner si ça peut poser problème.
L’effet de l’insertion est toujours que l’entrée dans une case particulière
diminue, donc la question serait : est-ce que l’insertion peut causer
problème avec l’élément sur la ligne d’en dessous. La réponse est non :
l’élément sera forcément réinséré faiblement à gauche de sa position
dans la ligne d’en dessous, ce qui fait qu’il sera plus grand que l’entrée
en dessous.

Cela définit le tableau P (on dit ≪ le tableau d’insertion ≫). Le
deuxième tableau enregistre la croissance du tableau P : on met 1 dans
la première case, 2 dans la deuxième, et ainsi de suite. Ça donne auto-
matiquement un tableau standard. C’est le ≪ tableau d’enregistrement
≫.

La correspondance de Robinson–Schensted envoie un permutation π
à la paire (ordonnée) (P,Q).
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Théorème 3.2.1. La correspondance de Robinson–Schensted est une
bijection entre les permutations de n et les paires de tableaux (P,Q) de
la même forme, de taille n.

Démonstration. Pour démontrer le théorème, il suffit de donner une
inverse. L’inverse est construite de cette manière. Dans Q, on retrouve
n. Sa position indique la dernière case qui a été remplie dans P . Ça veut
dire que c’est dans cette case (forcément à la fin de la ligne) que nous
avons finalement pu insérer sans tasser un autre entrée. Mais ça ne veut
pas dire que c’est cette entrée là qu’on a commencer d’insérer ! Cette
entrée-là était tassée de la ligne d’avant. Par quelle entrée ? Par la plus
grande entrée dans cette ligne qui lui est inférieure. On continue comme
ça, remontant le tableau, inversant de façon graduelle l’insertion qui a
fini par ajouter une entrée dans la case n du tableau Q. Lorqu’on arrive
à la première ligne, on détermine quelle entrée, actuellement là-dedans,
a été insérée. C’est donc la dernière entrée de π.

Nous avons déterminé l’état des lieux avant cette insertion (le n de
Q n’est plus présent, l’insertion dans P est inversée), et nous procédons
de la même manière pour la case n−1 dans Q. Puisque, pour n’importe
quelle paire de tableau, on peut trouver l’unique permutation envoyée
à la paire par Robinson–Schensted, c’est une bijection. □


