COURS 10

Version du 19 février 2025.

Rappel. Nous avons commencé a regarder une structure d’ordre sur
les pavages par dominos d’une région F' dans le plan (sans trous!).
(Ordre que nous allons démontrer aujourd’hui est un treillis distributif.)

Nous colorons les carrés de F' en échiquier. Nous orientons les arétes
de telle sorte qu'on suit la fleche si le carré blanc est a gauche. En
suivant la fleche de v vers son voisin w, Ah(v, w) = 1, sinon Ah(v, w) =
—1.

Nous définissons une hauteur pour tout sommet dans F' N Z2 On
choisit un sommet sur le bord, et on le donne une hauteur de zéro.
Tous les autres hauteurs se calculent a partir de ce premier, en utilisant
les changements d’hauteur, en suivant un chemin autorisé, c¢’est-a-dire
qu’il passe par les bords des dominos (qui ne les coupe pas). 1l fallait
démontrer, bien sur, que cette hauteur était bien définie (essentielle-
ment, ¢’était le lemme 2.8.1).

Nous avons aussi vu que la fonction hauteur correspondant au pavage
détermine le pavage (lemme 2.8.2). Deux sommets adjacents ont un Ah
de +3 si I'aréte qui les lie coupe un domino, et +1 sinon, ce qui permet
de reconstruire le pavage.

Ca nous permet de définir un ordre sur les pavages, avec T" > U si
hr(v) > hy(v) pour tout v dans F N Z2.

Nous avons aussi démontré que la hauteur a chaque sommet est
déterminé d’avance modulo 4 (lemme 2.8.3).

2.8. Pavage par dominos, suite. Nous voulons maintenant reconnaitre
exactement quelles fonctions sont vraiment des fonctions hauteur.

Lemme 2.8.4. Soit f une fonction sur les sommets de F N Z? telle
que :

— f(vo) = 0.
— Pour v, w voisins, si Ah(v,w) = 1, alors f(w) = f(v) + 1 ou
Flw) = f(v) — 3.

— Pour v,w voisins, si Ah(v,w) = 1 et Uaréte suit le bord, alors
flw) = f(v) +1.
Alors il existe un pavage avec f comme sa fonction hauteur. Toute

fonction hauteur vérifie ces conditions.
1
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Démonstration. Nous avons déja vu dans la démonstration du lemme
2.8.2 que toute fonction de hauteur vérifie ces conditions.

Si on considere les quatre pas dans le sens positif autour d’un carré,
a chaque fois la valeur de f monte de 1 ou descend de trois. Il faut donc
qu’on monte de 1 trois fois, et qu’on descend de trois une fois, puisque
en total on arrive de nouveau a la méme valeur de f du départ. La fois
qu’on descend, c’est le coté du carré qui souhaite étre couplé avec un
autre demi-domino. Et puisqu’il en va de méme pour les carrés blancs
et les carrés noirs, si I'aréte qui sépare deux carrés a un changement de
hauteur de 3, ces deux carrés souhaitent tous les deux étre un domino
ensemble, et si le changement d’hauteur est de 1, ni I'un ni 'autre ne
le souhaite. Le troisieme point fait qu’aucun carré ne cherche a étre
couplé avec un carré hors de la région. Ca fait que chaque carré blanc
est couplé avec un carré noir, et vice versa : nous avons notre pavage,
et on voit sans difficulté que sa fonction hauteur est bien f. 0

Lemme 2.8.5. Soient T, U deux pavages, avec fonctions hauter hy, hy.
Alors f = min(hr, hy) et g = max(hy, hy) sont également des fonc-
tions hauteur.

Démonstration. Nous démontrons le résultat pour f; ’argument pour
g est completement similaire. Nous le démontrons en utilisant le lemme
2.8.4. Les premier et troisieme énoncés sont évidentes, car les fonctions
hauteurs hr et hy (et n’importe quel autre fonction hauteur) s’ac-
cordent sur les bords.

Soit v, w une couple de sommets voisins avec Ah(v, w) = 1. Suppo-
sons que hr(v) < hy(v), ce qui veut dire que f(v) = hy(v). Nous vou-
lons démontrer qu’il est également le cas que f(w) = hy(w); puisque
hr vérifie la deuxieme condition pour (v, w), c’est également le cas pour

f.

Du lemme 2.8.3, il s’ensuit que hr(v) < hy(v) — 4. Cependant,
hr(w) = hy(v) + 1 ou hyp(v) — 3, et hy(w) = hy(v) +1 ou hy(v) —3. 11
s’ensuit que le minimum de hy(w), hy(w) est forcément égal & hr(w)
(méme s’il se peut que les deux sont égaux), et nous avons réussi.

Le cas contraire, ou hr(v) > hy(v) est identique; on échange les
roles de T, U.

Finalement, si hr(v) = hy(v) (qui est aussi égal a f(v)) on sait que
f(w) = min hy(w), hy(w), ce qui fait que sur v, w, on a que f s’accorde
avec soit hy soit hy (soit les deux si elles s’accordent aussi sur w). Donc
encore, on sait que f vérifie la deuxieme condition. On a démontré que
f vérifie les conditions du lemme 2.8.4, et donc que f est une vraie
fonction hauteur. U
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Théoreme 2.8.1. L’ordre sur les pavages de F est un treillis distri-
butif.

Démonstration. 11 est évident que les fonctions hauteurs du lemme 2.8.5
sont forcément les fonctions hauteur du inf et du sup de T, U. Donc ces
derniers existent, et I'ordre est un treillis. De plus, puisque = V (y A 2)
et (zVy) A (zV z) se calculent coordonnée par coordonné, il suffit de
vérifier I'identité a un seul sommet, ou il revient a la distributivité de
min et max. L]

On dit qu'un sommet est un minimum local (resp. maximum local)
si la 'hauteur est plus grand que celui de ses quatre voisins. Si un
sommet est 'un ou 'autre, nous 'appelons un extremum local.

Lemme 2.8.6. Un sommet est un extremum local si et seulement si il
est au miliew de deux dominos adjacents par leur bord long.

(Déterminer s’il s’agit d'un max ou d’un min est facile, selon les
regles pour les flips que nous avons déja remarqués.)

Démonstration. Nous avons déja vu que si la configuration est celui de
I’énoncé, le sommet désigné est bien un extremum local.

Soit v un minimum local. Considérons les deux arétes orientés vers
v, mettons (u,v) et (w,v). On sait que les deux possibilités sont que
Ah(u,v) = —3 ou 1. Mais puisque v est un minimum local, Ah(u,v) =
—3, et il en va de méme pour Ah(w,v). Ca démontre que ces deux
arétes coupent chacun un domino, et v est effectivement au milieu de
deux dominos adjacents par leur bord long. L’argument si v est un
maximum local est presqu’identique. U

Lemme 2.8.7. Soit T, U deux pavages, avec T < U. Il existe un flip
de T, disons T', tel que T' < U.

Soulignons qu’a partir de ce lemme, on voit qu’il est possible de
passer de T" a U par une suite de flips qui augmentent ’hauteur a
chaque étape.

Corollaire 2.8.1. Les relations de couverture dans le poset des pavages
sont données par les flips.

Démonstration. Nous avons déja vu que si T' et U sont reliés par un
flip, 'un est plus petit que l'autre, et les fonctions hauteur sont les
méme, sauf & un point ou leurs hauteurs different par 4. Mais puisque
les hauteurs sont déterminées modulo 4, il est impossible qu’il y ait
une fonction hauteur entre 7" et U. Donc il s’agit d’une relation de
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couverture. Et par le lemme (pas encore démontré), n’importe quelle
relation dans l'ordre peut étre factorisée comme suite de flips, ce qui
démontre que les flips sont toutes les relations de couverture. 0

Démontrons maintenant le lemme.

Démonstration du lemme 2.8.7. Supposons que T' < U. Nous voulons
trouver un minimum local de T tel que le flip la est toujours < U.
Mais puisque le flip ne change que cette hauteur, il suffit de trouver un
minimum local v de T" ou hr(v) < hy(v).

Puisque T' < U, il existe (au moins) un point w avec hy(w) < hy(w).
Mais possiblement w n’est pas un minimum local pour 7. Si c¢’est le cas,
w a un voisin w’ avec hr(w') < hp(w). 1l s’ensuit que hy(w') < hp(w')
aussi. Donc de cette maniere on peut continuer de chercher un minimum
local. Puisque F est fini, on y arrivera finalement, et a chaque sommet
sur le chemin, y compris la fin, on avait hy(w) < hy(w), ce qui fait que
le flip au sommet final reste en dessous de hy, comme voulu. U

Echatillonage. Une question tres naturelle est de chercher un pavage
pris “au hasard,” c’est-a-dire, uniformément. Sans les connaitre tous,
c’est pas évident comment le faire. Il y a une stratégie tres générale.

Soit X un ensemble dont je veux tirer un élément uniformément.
J’identifie un ensemble de “flips” sur X. Chaque “flip” désigne une
involution de X. (Donc, dans notre cas, un “flip” serait : j’essaie de
flipper a v si je le peux, sinon je ne fais rien.) On suppose que le graphe
des flips sur les éléments de X est connexe.

Alors, une fagon de trouver un élément de X aléatoirement c’est de
commencer avec un certain xo € X, et puis de choisir aléatoirement une
suite de flips (disons uniformément, pour simplicité, méme si une hy-
pothese plus faible suffit). Il est donc important que 1’ensemble des flips
est relativement petit et bien compris. Dans le cas que nous considérons,
c’est ’ensembles des points de Z? & I'intérieur de F.

Je ne veux pas trop entrer dans le détails de la théorie de probabilité,
et spécifiquement les chaines de Markov. Il me semble plausible que,
indépendamment du xq pris au départ, on convergera vers une distribu-
tion de probabilité sur les points de X (c’est-a-dire, une fonction = de X
vers [0, 1] telle que > m(x) = 1). (Pour que ceci soit vrai, il nous faut
quelques conditions assez minimes : il doit étre possible de n’importe
quel pavage vers n’importe quel autre par une suite de flips, et il faut
que le pgdc des tailles des orbites des flips soit 1.) Cette distribution
est caractérisée par la propriété que si je prends un élément de X selon
cette distribution, et je choisis un flip f que j’applique, la distribution
des résultats doit étre la méme. Plus précisément, la probabilité que
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j'obtienne x apres avoir fait un flip c¢’est la probabilité que de choisir
un flip f, fois la probabilité qu’avant, j’étais dans 1’état f~1(x). Donc
la distribution a laquelle on convergera vérifie :

1
7 2o (7 ) = (),
feF
Mais on voit que la distribution uniforme vérifie cette condition, donc
ca doit étre la distribution uniforme vers laquelle on procede.



