
COURS 10

Version du 19 février 2025.

Rappel. Nous avons commencé à regarder une structure d’ordre sur
les pavages par dominos d’une région F dans le plan (sans trous !).
(Ordre que nous allons démontrer aujourd’hui est un treillis distributif.)

Nous colorons les carrés de F en échiquier. Nous orientons les arêtes
de telle sorte qu’on suit la flèche si le carré blanc est à gauche. En
suivant la flèche de v vers son voisin w, ∆h(v, w) = 1, sinon ∆h(v, w) =
−1.

Nous définissons une hauteur pour tout sommet dans F ∩ Z2. On
choisit un sommet sur le bord, et on le donne une hauteur de zéro.
Tous les autres hauteurs se calculent à partir de ce premier, en utilisant
les changements d’hauteur, en suivant un chemin autorisé, c’est-à-dire
qu’il passe par les bords des dominos (qui ne les coupe pas). Il fallait
démontrer, bien sur, que cette hauteur était bien définie (essentielle-
ment, c’était le lemme 2.8.1).

Nous avons aussi vu que la fonction hauteur correspondant au pavage
détermine le pavage (lemme 2.8.2). Deux sommets adjacents ont un ∆h
de ±3 si l’arête qui les lie coupe un domino, et ±1 sinon, ce qui permet
de reconstruire le pavage.

Ça nous permet de définir un ordre sur les pavages, avec T > U si
hT (v) ≥ hU(v) pour tout v dans F ∩ Z2.
Nous avons aussi démontré que la hauteur à chaque sommet est

déterminé d’avance modulo 4 (lemme 2.8.3).

2.8. Pavage par dominos, suite. Nous voulons maintenant reconnâıtre
exactement quelles fonctions sont vraiment des fonctions hauteur.

Lemme 2.8.4. Soit f une fonction sur les sommets de F ∩ Z2 telle
que :
— f(v0) = 0.
— Pour v, w voisins, si ∆h(v, w) = 1, alors f(w) = f(v) + 1 ou

f(w) = f(v)− 3.
— Pour v, w voisins, si ∆h(v, w) = 1 et l’arête suit le bord, alors

f(w) = f(v) + 1.
Alors il existe un pavage avec f comme sa fonction hauteur. Toute
fonction hauteur vérifie ces conditions.
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Démonstration. Nous avons déjà vu dans la démonstration du lemme
2.8.2 que toute fonction de hauteur vérifie ces conditions.

Si on considère les quatre pas dans le sens positif autour d’un carré,
à chaque fois la valeur de f monte de 1 ou descend de trois. Il faut donc
qu’on monte de 1 trois fois, et qu’on descend de trois une fois, puisque
en total on arrive de nouveau à la même valeur de f du départ. La fois
qu’on descend, c’est le côté du carré qui souhaite être couplé avec un
autre demi-domino. Et puisqu’il en va de même pour les carrés blancs
et les carrés noirs, si l’arête qui sépare deux carrés à un changement de
hauteur de 3, ces deux carrés souhaitent tous les deux être un domino
ensemble, et si le changement d’hauteur est de 1, ni l’un ni l’autre ne
le souhaite. Le troisième point fait qu’aucun carré ne cherche à être
couplé avec un carré hors de la région. Ça fait que chaque carré blanc
est couplé avec un carré noir, et vice versa : nous avons notre pavage,
et on voit sans difficulté que sa fonction hauteur est bien f . □

Lemme 2.8.5. Soient T, U deux pavages, avec fonctions hauter hT , hU .
Alors f = min(hT , hU) et g = max(hT , hU) sont également des fonc-
tions hauteur.

Démonstration. Nous démontrons le résultat pour f ; l’argument pour
g est complètement similaire. Nous le démontrons en utilisant le lemme
2.8.4. Les premier et troisième énoncés sont évidentes, car les fonctions
hauteurs hT et hU (et n’importe quel autre fonction hauteur) s’ac-
cordent sur les bords.

Soit v, w une couple de sommets voisins avec ∆h(v, w) = 1. Suppo-
sons que hT (v) < hU(v), ce qui veut dire que f(v) = hT (v). Nous vou-
lons démontrer qu’il est également le cas que f(w) = hT (w) ; puisque
hT vérifie la deuxième condition pour (v, w), c’est également le cas pour
f .

Du lemme 2.8.3, il s’ensuit que hT (v) ≤ hU(v) − 4. Cependant,
hT (w) = hT (v)+ 1 ou hT (v)− 3, et hU(w) = hU(v)+ 1 ou hU(v)− 3. Il
s’ensuit que le minimum de hT (w), hU(w) est forcément égal à hT (w)
(même s’il se peut que les deux sont égaux), et nous avons réussi.

Le cas contraire, où hT (v) > hU(v) est identique ; on échange les
rôles de T, U .
Finalement, si hT (v) = hU(v) (qui est aussi égal à f(v)) on sait que

f(w) = minhT (w), hU(w), ce qui fait que sur v, w, on a que f s’accorde
avec soit hT soit hU (soit les deux si elles s’accordent aussi sur w). Donc
encore, on sait que f vérifie la deuxième condition. On a démontré que
f vérifie les conditions du lemme 2.8.4, et donc que f est une vraie
fonction hauteur. □



COURS 10 3

Théorème 2.8.1. L’ordre sur les pavages de F est un treillis distri-
butif.

Démonstration. Il est évident que les fonctions hauteurs du lemme 2.8.5
sont forcément les fonctions hauteur du inf et du sup de T, U . Donc ces
derniers existent, et l’ordre est un treillis. De plus, puisque x ∨ (y ∧ z)
et (x ∨ y) ∧ (x ∨ z) se calculent coordonnée par coordonné, il suffit de
vérifier l’identité à un seul sommet, où il revient à la distributivité de
min et max. □

On dit qu’un sommet est un minimum local (resp. maximum local)
si là l’hauteur est plus grand que celui de ses quatre voisins. Si un
sommet est l’un ou l’autre, nous l’appelons un extremum local.

Lemme 2.8.6. Un sommet est un extremum local si et seulement si il
est au milieu de deux dominos adjacents par leur bord long.

(Déterminer s’il s’agit d’un max ou d’un min est facile, selon les
règles pour les flips que nous avons déjà remarqués.)

Démonstration. Nous avons déjà vu que si la configuration est celui de
l’énoncé, le sommet désigné est bien un extremum local.

Soit v un minimum local. Considérons les deux arêtes orientés vers
v, mettons (u, v) et (w, v). On sait que les deux possibilités sont que
∆h(u, v) = −3 ou 1. Mais puisque v est un minimum local, ∆h(u, v) =
−3, et il en va de même pour ∆h(w, v). Ça démontre que ces deux
arêtes coupent chacun un domino, et v est effectivement au milieu de
deux dominos adjacents par leur bord long. L’argument si v est un
maximum local est presqu’identique. □

Lemme 2.8.7. Soit T, U deux pavages, avec T < U . Il existe un flip
de T , disons T ′, tel que T ′ ≤ U .

Soulignons qu’à partir de ce lemme, on voit qu’il est possible de
passer de T à U par une suite de flips qui augmentent l’hauteur à
chaque étape.

Corollaire 2.8.1. Les relations de couverture dans le poset des pavages
sont données par les flips.

.

Démonstration. Nous avons déjà vu que si T et U sont reliés par un
flip, l’un est plus petit que l’autre, et les fonctions hauteur sont les
même, sauf à un point où leurs hauteurs diffèrent par 4. Mais puisque
les hauteurs sont déterminées modulo 4, il est impossible qu’il y ait
une fonction hauteur entre T et U . Donc il s’agit d’une relation de
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couverture. Et par le lemme (pas encore démontré), n’importe quelle
relation dans l’ordre peut être factorisée comme suite de flips, ce qui
démontre que les flips sont toutes les relations de couverture. □

Démontrons maintenant le lemme.

Démonstration du lemme 2.8.7. Supposons que T < U . Nous voulons
trouver un minimum local de T tel que le flip là est toujours ≤ U .
Mais puisque le flip ne change que cette hauteur, il suffit de trouver un
minimum local v de T où hT (v) < hU(v).

Puisque T < U , il existe (au moins) un point w avec hT (w) < hU(w).
Mais possiblement w n’est pas un minimum local pour T . Si c’est le cas,
w a un voisin w′ avec hT (w

′) < hT (w). Il s’ensuit que hU(w
′) < hT (w

′)
aussi. Donc de cette manière on peut continuer de chercher un minimum
local. Puisque F est fini, on y arrivera finalement, et à chaque sommet
sur le chemin, y compris la fin, on avait hT (w) < hU(w), ce qui fait que
le flip au sommet final reste en dessous de hU , comme voulu. □

Échatillonage. Une question très naturelle est de chercher un pavage
pris “au hasard,” c’est-à-dire, uniformément. Sans les connâıtre tous,
c’est pas évident comment le faire. Il y a une stratégie très générale.
Soit X un ensemble dont je veux tirer un élément uniformément.

J’identifie un ensemble de “flips” sur X. Chaque “flip” désigne une
involution de X. (Donc, dans notre cas, un “flip” serait : j’essaie de
flipper à v si je le peux, sinon je ne fais rien.) On suppose que le graphe
des flips sur les éléments de X est connexe.

Alors, une façon de trouver un élément de X aléatoirement c’est de
commencer avec un certain x0 ∈ X, et puis de choisir aléatoirement une
suite de flips (disons uniformément, pour simplicité, même si une hy-
pothèse plus faible suffit). Il est donc important que l’ensemble des flips
est relativement petit et bien compris. Dans le cas que nous considérons,
c’est l’ensembles des points de Z2 à l’intérieur de F .

Je ne veux pas trop entrer dans le détails de la théorie de probabilité,
et spécifiquement les châınes de Markov. Il me semble plausible que,
indépendamment du x0 pris au départ, on convergera vers une distribu-
tion de probabilité sur les points deX (c’est-à-dire, une fonction π deX
vers [0, 1] telle que

∑
x π(x) = 1). (Pour que ceci soit vrai, il nous faut

quelques conditions assez minimes : il doit être possible de n’importe
quel pavage vers n’importe quel autre par une suite de flips, et il faut
que le pgdc des tailles des orbites des flips soit 1.) Cette distribution
est caractérisée par la propriété que si je prends un élément de X selon
cette distribution, et je choisis un flip f que j’applique, la distribution
des résultats doit être la même. Plus précisément, la probabilité que
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j’obtienne x après avoir fait un flip c’est la probabilité que de choisir
un flip f , fois la probabilité qu’avant, j’étais dans l’état f−1(x). Donc
la distribution à laquelle on convergera vérifie :

1

|F|
∑
f∈F

π(f−1(x)) = π(x).

Mais on voit que la distribution uniforme vérifie cette condition, donc
ça doit être la distribution uniforme vers laquelle on procède.


