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1. Introduction

Aujourd’hui, je veux commencer avec une introduction à plusieurs
des questions que je souhaite aborder dans le cours. C’est la première
fois que je donne ce cours, et je n’ai pas de notes déjà écrites, donc
nous pouvons facilement changer les sujets selon vos intérêts. Donc,
mon but est de présenter les sujets dont je pensais parler, pour voir si
vous les trouvez intéressants. Je vais faire circuler un sondage.

Pour moi, le cours se divise de façon naturelle en deux.
Une partie se situe plus dans la combinatoire des graphes, l’autre

dans la combinatoire des tableaux.

1.1. Combinatoire des tableaux. Soit λ une partition de n. C’est-
à-dire que λ = (λ1, . . . , λr), avec λ1 ≥ λ2 ≥ . . . λr des entier positifs,
ayant somme n.

Le diagramme de Ferrers associé à λ a λ1 cases sur la première ligne,
λ2 sur la deuxième, etc, et chaque ligne est justifiée à gauche.

Un remplissage de λ associe à chaque case du diagramme un entier
positif (ou quelque chose de plus général).

Un tableau standard est un remplissage par les entiers 1, 2, . . . , n,
où chaque entier apparâıt une seule fois, et les entrées sont croissantes
quand on les lit de gauche à droite dans une ligne, ou d’en bas vers le
haut dans une colonne.

Un tableau semi-standard est un remplissage par entiers où les lignes
sont faiblement croissantes, mais les colonnes sont strictement crois-
sants.

Il est également intéressant de considérer la différence de deux par-
titions. Si µ est contenu dans λ (c-à-d, λi ≥ µi pour tout i, où les
données manquantes sont considérées comme des zéros, λ/µ désigne
les cases de λ privés des cases de µ. On l’appelle diagramme gauche, et
si on veut distingues celles de forme d’une partition, on les appelle des
diagrammes droites.

Encore, on peut considérer des remplissages standards ou semi-standards
de λ/µ.

Là où ça devient sportif, c’est quand on a un remplissage de λ/µ, et
on veut le convertir en remplissage d’une autre forme.
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Un outil fondamental pour cela est le jeu de taquin. On commence
avec un remplissage de λ/µ qui est standard ou semistandard. On
choisit une case maximale de µ. On veut déplacer dans cette case
une des entrées voisines (à droite ou au dessus). Laquelle ? Celle qui
est inférieure, sinon, on est en voie de violer les conditions pour être
(semi)standard. Mais maintenant, on a une vide à l’intérieur du rem-
plissage. On répète (toujours avec une entrée à droite ou au dessus), jus-
qu’à ce que la case vide n’a plus de voisins au dessus ou à droite. Main-
tenant, on a un remplissage, encore (semi)standard, de forme λ′/µ′, où
λ′, resp. µ′, ont perdu une case par rapport à λ, µ. On répète jusqu’à ce
que µ = 0. On a maintenant une remplissage de forme d’une partition
de taille |λ|−|µ|. On l’appelle la rectification du remplissage de départ.

Remarquons qu’il y a plusieurs choix possibles. Néanmoins, on a le
théorème suivant :

Théorème 1.1.1. Si on commence avec un remplissage de λ/µ, le
remplissage de forme d’une partition qui est produit par le jeu de taquin
est bien défini.

La forme qui résulte dépend du remplissage.

Théorème 1.1.2. Si on considère tous les remplissages standards de
λ/µ, et on les rectifie, on constate que, pour chaque partition ν, le
nombre de fois qu’un remplissage de ν apparâıt parmi les rectifications,
ne dépend pas du remplissage de ν choisi. (Mais il dépend de ν.)

Ceci permet de définir cλµν comme étant ce nombre. Ils s’appellent
les coéfficients de Littlewood–Richardson.

1.1.1. Constantes de structure. Si on a une base (k-linéaire) B d’une
algèbre A sur un corps k, pour v, w ∈ B, je peux multiplier v · w, et
puis le développer de nouveau dans la base :

v · w =
∑
u∈B

cuv,wu

Les constantes de structure de A par rapport à B sont ces cuv,w. Si
on ne sait absolument rien sur l’algèbre, n’importe quels constantes
de structure pourraient apparâıtre, mais si l’algèbre est (par exemple)
associative, ça donne des conditions non triviales sur les constantes de
structure.

Il s’avère que les coefficients de Littlewood–Richardson donnent les
constantes de structure pour certaines algèbres intéressantes : les fonc-
tions symétriques, et les anneaux de cohomologie des variétés grassman-
niennes. On pourra parler des fonctions symétiques si cela vous intéresse
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(et si vous n’avez pas déjà trop entendu parler). Théoriquement, la co-
homologie provient de la topologie algébrique, et donc on pourrait se
dire qu’il n’est pas à sa place dans un cours de combinatoire, mais c’est
vraiment étonnant à quel point on peut l’étudier sans comprendre quoi
que ce soit de la topologie.

1.1.2. Mots, monöıde plaxique. Bien que le jeu de taquin est très élégant,
on aimerait peut-être une façon plus directe de passer directement entre
les remplissages gauches et les remplissages droites. Il s’avère qu’on
peut faire cela en regardant les mots de lecture des remplissages. Ici
commence toute une histoire sur une certaine relation d’équivalence
sur les mots (monöıde plaxique, . . .).

1.1.3. Variantes. Au lieu de considérer des remplissages des partitions,
on peut considérer les diagrammes de Ferrers décalés, où la forme est
d’une partition où chaque partie est d’une taille différente, et chaque
ligne est décalé d’un cran par rapport à la précédente. Les deux théorèmes
cités ci-haut s’appliquent dans ce cadre aussi. Et ça donne les constantes
de structure pour une sous-algèbres des fonctions symétriques, et aussi
une algèbre de cohomologie d’une autre famille de variétés.

En principe, on pourrait considérer des remplissages de n’importe
quel poset et faire une version du jeu de taquin. Mais les deux théorèmes
ci-hauts ne seraient plus vérifiés. Un cadre dans lequel le premier théorème
ci-haut est vérifié est les posets “d-complètes” de Proctor.

On peut aussi changer les règles pour les remplissages. Un remplis-
sage est dit croissant s’il est strictement croissant dans les deux sens.
Pour un tel remplissage, il n’est pas forcément possible de faire passer
un des voisin avant l’autre (s’ils sont égaux) - il faut plutôt se permettre
de laisser les deux entrées égales entrer en même temps. Cette théorie
a été développé par Alex Yong et moi (et par la suite pas plusieurs
autres personnes).

1.2. Correspondance de Robinson–Schensted–Knuth. La ver-
sion correspondance de Robinson–Schensted est une bijection entre les
éléments du groupe symétrique Sn et les paires de tableaux standards
de taille n et de la même forme.

On peut décrire la correspondance RS en termes du jeu de taquin.
Pour le premier tableau, on met les entrées de la permutation sur une
anti-diagonale (conçue comme forme gauche), et on rectifie. Pour le
deuxième, on met la permutation inverse.

Cette façon rapide de la définir ne met bien sûr pas en évidence
l’intérêt.
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RSK généralise la correspondance RS, et est une correspondance
entre les matrices d’entiers non negatifs de taille n×n, et les paires de
tableaux semi-standards de la même forme, sur les entiers de 1 à n.

1.3. Couplages. La deuxième partie du cours traite de la théorie des
graphes (dans un sens large). Un graphe est appelé biparti si on peut
diviser les sommets en deux parties, tels que chaque arête lie un sommet
de chaque partie. Si on a un graphe biparti, avec les deux parties de
la même taille, on peut chercher là-dedans un couplage parfait (un
ensemble d’arêtes tel que chaque sommet est incident à un seul arête).
Quand est-ce qu’il sera possible ?

Théorème 1.3.1 (Théorème de mariage de Hall). Il y a une condition
nécessaire évidente pour qu’il existe un couplage parfait. Cette condition
est également suffisante.

Si on parle des mariages, on peut aussi considérer le problème des
mariages stables. Supposons que nous avons n femmes et n hommes qui
veulent se marier (et que nos mariages comportent une femme et un
homme, même s’il d’autres choix peuvent également être intéressants).
Supposons que chaque femme a une liste (totalement ordonnée) de
préférences des hommes, et vice versa pour les hommes. Une collection
de mariages stables est une collection de mariages où tout le monde
est marié et il n’existe pas une femme et un homme qui seraient plus
contents ensemble qu’avec leurs partenaires.

L’algorithme de Gayle–Shapley est une excellente algorithme qui per-
met (toujours !) de trouver une collection stable.

Il y a des variants. On peut aussi étudier la structure de l’ensemble
des collections stables, qui forme un treillis distributif.

1.4. Flots. Si on a un graphe orienté, on peut voir les arêtes comme des
chemins qui permettent de transporter des biens. Mettons que chaque
arête a une capacité qui borne le montant de matériel qu’elle peut
transporter. Combien de matériel est-ce qu’on peut transporter d’un
sommet v à un autre sommet w ? (À chaque sommet entre v et w, le
montant qui arrive au sommet doit être égal au montant qui part.)

La réponse est donnée par l’théorème de Ford–Fulkerson, qui donne
également un algorithme pour trouver un flot maximal. Ici aussi, il ya
de belles variantes.


